Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
J Neurochem ; 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777475

RESUMO

Rett syndrome is an X-linked neurodevelopmental disorder caused by mutation of Mecp2 gene and primarily affects females. Glial cell dysfunction has been implicated in in Rett syndrome (RTT) both in patients and in mouse models of this disorder and can affect synaptogenesis, glial metabolism and inflammation. Here we assessed whether treatment of adult (5-6 months old) symptomatic Mecp2-heterozygous female mice with N-acetyl cysteine conjugated to dendrimer (D-NAC), which is known to target glia and modulate inflammation and oxidative injury, results in improved behavioral phenotype, sleep and glial inflammatory profile. We show that unbiased global metabolomic analysis of the hippocampus and striatum in adult Mecp2-heterozygous mice demonstrates significant differences in lipid metabolism associated with neuroinflammation, providing the rationale for targeting glial inflammation in this model. Our results demonstrate that treatment with D-NAC (10 mg/kg NAC) once weekly is more efficacious than equivalently dosed free NAC in improving the gross neurobehavioral phenotype in symptomatic Mecp2-heterozygous female mice. We also show that D-NAC therapy is significantly better than saline in ameliorating several aspects of the abnormal phenotype including paw clench, mobility, fear memory, REM sleep and epileptiform activity burden. Systemic D-NAC significantly improves microglial proinflammatory cytokine production and is associated with improvements in several aspects of the phenotype including paw clench, mobility, fear memory, and REM sleep, and epileptiform activity burden in comparison to saline-treated Mecp2-hetereozygous mice. Systemic glial-targeted delivery of D-NAC after symptom onset in an older clinically relevant Rett syndrome model shows promise in improving neurobehavioral impairments along with sleep pattern and epileptiform activity burden. These findings argue for the translational value of this approach for treatment of patients with Rett Syndrome.

2.
Mol Ther ; 30(3): 990-1005, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34861415

RESUMO

Chemogenetics enables precise, non-invasive, and reversible modulation of neural activity via the activation of engineered receptors that are pharmacologically selective to endogenous or exogenous ligands. With recent advances in therapeutic gene delivery, chemogenetics is poised to support novel interventions against neuropsychiatric diseases and disorders. To evaluate its translational potential, we performed a scoping review of applications of chemogenetics that led to the reversal of molecular and behavioral deficits in studies relevant to neuropsychiatric diseases and disorders. In this review, we present these findings and discuss the potential and challenges for using chemogenetics as a precision medicine-based neuromodulation strategy.


Assuntos
Terapia Genética , Ligantes
3.
Acta Neurochir (Wien) ; 165(12): 3565-3572, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945995

RESUMO

BACKGROUND: A cornerstone of surgical residency training is an educational program that produces highly skilled and effective surgeons. Training structures are constantly being revised due to evolving program structures, shifting workforces, and variability in the clinical environment. This has resulted in significant heterogeneity in all surgical resident education, training tools utilized, and measures of training efficacy. METHODS: We systematically reviewed educational interventions for technical skills in neurosurgery published across PubMed, Embase, and Web of Science over four decades. We extracted general characteristics of each surgical training tool while categorizing educational interventions by modality and neurosurgical application. RESULTS: We identified 626 studies which developed surgical training tools across eight different training modalities: textbooks and literature (11), online resources (53), didactic teaching and one-on-one instruction (7), laboratory courses (50), cadaveric models (63), animal models (47), mixed reality (166), and physical models (229). While publication volume has grown exponentially, a majority of studies were cited with relatively low frequency. Most training programs were published in the development and validation phase with only 2.1% of tools implemented long-term. Each training modality expressed unique strengths and limitations, with limited data reported on the educational impact connected to each training tool. CONCLUSIONS: Numerous surgical training tools have been developed and implemented across residency training programs. Though many creative and cutting-edge tools have been devised, evidence supporting educational efficacy and long-term application is lacking. Increased utilization of novel surgical training tools will require validation of metrics used to assess the training outcomes and optimized integration with clinical practice.


Assuntos
Internato e Residência , Neurocirurgia , Humanos , Currículo , Procedimentos Neurocirúrgicos , Neurocirurgia/educação , Competência Clínica
4.
Pediatr Crit Care Med ; 22(4): e233-e242, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33315754

RESUMO

OBJECTIVES: To identify staff-reported factors and perceptions that influenced implementation and sustainability of an early mobilization program (PICU Up!) in the PICU. DESIGN: A qualitative study using semistructured phone interviews to characterize interprofessional staff perspectives of the PICU Up! program. Following data saturation, thematic analysis was performed on interview transcripts. SETTING: Tertiary-care PICU in the Johns Hopkins Hospital, Baltimore, MD. SUBJECTS: Interprofessional PICU staff. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Fifty-two staff members involved in PICU mobilization across multiple disciplines were interviewed. Three constructs emerged that reflected the different stages of PICU Up! program execution: 1) factors influencing the implementation process, 2) staff perceptions of PICU Up!, and 3) improvements in program integration. Themes were developed within these constructs, addressing facilitators for PICU Up! implementation, cultural changes for unitwide integration, positive impressions toward early mobility, barriers to program sustainability, and refinements for more robust staff and family engagement. CONCLUSIONS: Three years after implementation, PICU Up! remains well-received by staff, positively influencing role satisfaction and PICU team dynamics. Furthermore, patients and family members are perceived to be enthusiastic about mobility efforts, driving staff support. Through an ongoing focus on stakeholder buy-in, interprofessional engagement, and bundled care to promote mobility, the program has become part of the culture in the Johns Hopkins Hospital PICU. However, several barriers remain that prevent consistent execution of early mobility, including challenges with resource management, sedation decisions, and patient heterogeneity. Characterizing these staff perceptions can facilitate the development of solutions that use institutional strengths to grow and sustain PICU mobility initiatives.


Assuntos
Deambulação Precoce , Família , Criança , Humanos , Unidades de Terapia Intensiva Pediátrica , Pesquisa Qualitativa
5.
J Neurosurg ; : 1-10, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579358

RESUMO

OBJECTIVE: CT and MRI are synergistic in the information provided for neurosurgical planning. While obtaining both types of images lends unique data from each, doing so adds to cost and exposes patients to additional ionizing radiation after MRI has been performed. Cross-modal synthesis of high-resolution CT images from MRI sequences offers an appealing solution. The authors therefore sought to develop a deep learning conditional generative adversarial network (cGAN) which performs this synthesis. METHODS: Preoperative paired CT and contrast-enhanced MR images were collected for patients with meningioma, pituitary tumor, vestibular schwannoma, and cerebrovascular disease. CT and MR images were denoised, field corrected, and coregistered. MR images were fed to a cGAN that exported a "synthetic" CT scan. The accuracy of synthetic CT images was assessed objectively using the quantitative similarity metrics as well as by clinical features such as sella and internal auditory canal (IAC) dimensions and mastoid/clinoid/sphenoid aeration. RESULTS: A total of 92,981 paired CT/MR images obtained in 80 patients were used for training/testing, and 10,068 paired images from 10 patients were used for external validation. Synthetic CT images reconstructed the bony skull base and convexity with relatively high accuracy. Measurements of the sella and IAC showed a median relative error between synthetic CT scans and ground truth images of 6%, with greater variability in IAC reconstruction compared with the sella. Aerations in the mastoid, clinoid, and sphenoid regions were generally captured, although there was heterogeneity in finer air cell septations. Performance varied based on pathology studied, with the highest limitation observed in evaluating meningiomas with intratumoral calcifications or calvarial invasion. CONCLUSIONS: The generation of high-resolution CT scans from MR images through cGAN offers promise for a wide range of applications in cranial and spinal neurosurgery, especially as an adjunct for preoperative evaluation. Optimizing cGAN performance on specific anatomical regions may increase its clinical viability.

6.
Neuro Oncol ; 25(6): 1166-1176, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36723606

RESUMO

BACKGROUND: Quantitative imaging analysis through radiomics is a powerful technology to non-invasively assess molecular correlates and guide clinical decision-making. There has been growing interest in image-based phenotyping for meningiomas given the complexities in management. METHODS: We systematically reviewed meningioma radiomics analyses published in PubMed, Embase, and Web of Science until December 20, 2021. We compiled performance data and assessed publication quality using the radiomics quality score (RQS). RESULTS: A total of 170 publications were grouped into 5 categories of radiomics applications to meningiomas: Tumor detection and segmentation (21%), classification across neurologic diseases (54%), grading (14%), feature correlation (3%), and prognostication (8%). A majority focused on technical model development (73%) versus clinical applications (27%), with increasing adoption of deep learning. Studies utilized either private institutional (50%) or public (49%) datasets, with only 68% using a validation dataset. For detection and segmentation, radiomic models had a mean accuracy of 93.1 ± 8.1% and a dice coefficient of 88.8 ± 7.9%. Meningioma classification had a mean accuracy of 95.2 ± 4.0%. Tumor grading had a mean area-under-the-curve (AUC) of 0.85 ± 0.08. Correlation with meningioma biological features had a mean AUC of 0.89 ± 0.07. Prognostication of the clinical course had a mean AUC of 0.83 ± 0.08. While clinical studies had a higher mean RQS compared to technical studies, quality was low overall with a mean RQS of 6.7 ± 5.9 (possible range -8 to 36). CONCLUSIONS: There has been global growth in meningioma radiomics, driven by data accessibility and novel computational methodology. Translatability toward complex tasks such as prognostication requires studies that improve quality, develop comprehensive patient datasets, and engage in prospective trials.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico por imagem , Meningioma/patologia , Estudos Prospectivos , Gradação de Tumores , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/patologia
7.
Acta Neuropathol Commun ; 11(1): 122, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491289

RESUMO

Trimethylation of lysine 27 on histone 3 (H3K27me3) loss has been implicated in worse prognoses for patients with meningiomas. However, there have been challenges in measuring H3K27me3 loss, quantifying its impact, and interpreting its clinical utility. We conducted a systematic review across Pubmed, Embase, and Web of Science to identify studies examining H3K27me3 loss in meningioma. Clinical, histopathological, and immunohistochemistry (IHC) characteristics were aggregated. A meta-analysis was performed using a random-effects model to assess prevalence of H3K27me3 loss and meningioma recurrence risk. Study bias was characterized using the NIH Quality Assessment Tool and funnel plots. Nine publications met inclusion criteria with a total of 2376 meningioma cases. The prevalence of H3K27me3 loss was 16% (95% CI 0.09-0.27), with higher grade tumors associated with a significantly greater proportion of loss. H3K27me3 loss was more common in patients who were male, had recurrent meningiomas, or required adjuvant radiation therapy. Patients were 1.70 times more likely to have tumor recurrence with H3K27me3 loss (95% CI 1.35-2.15). The prevalence of H3K27me3 loss in WHO grade 2 and 3 meningiomas was found to be significantly greater in tissue samples less than five years old versus tissue of all ages and when a broader definition of IHC staining loss was applied. This analysis demonstrates that H3K27me3 loss significantly associates with more aggressive meningiomas. While differences in IHC and tumor tissue age have led to heterogeneity in studying H3K27me3 loss, a robust prognostic signal is present. Our findings suggest an opportunity to improve study design and standardize tissue processing to optimize clinical viability of this epigenetic marker.


Assuntos
Histonas , Neoplasias Meníngeas , Meningioma , Pré-Escolar , Feminino , Humanos , Masculino , Biomarcadores Tumorais/metabolismo , Histonas/genética , Histonas/metabolismo , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Meningioma/genética , Meningioma/patologia , Prognóstico
8.
Neurosurgery ; 92(6): e120-e125, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728276

RESUMO

Veterans Affairs (VA) medical centers serve as a unique training environment for US residency programs. In this study, we aim to explore the scope and details of VA integration into neurosurgery resident training. We used data from the Accreditation Council for Graduate Medical Education database to provide an overview of neurosurgery training programs with an active VA affiliation and developed a multi-institutional survey to gather information related to rotation design, operative volume, expectations, and core training values. Of the 116 neurosurgery residency programs, 40 have an active affiliation with a VA medical center (34%). Residents most frequently rotated at the VA during their third postgraduate year, with an average rotation length of 7.5 months (range 2-21). Nearly all programs reported a weekly mix of clinic and operative days (96%), with residents longitudinally following patients throughout their rotations. Attending neurosurgeons from VA-affiliated programs reported operative experience (100%), independent decision-making (89%), and continuity of care (81%) as core values of VA neurosurgery rotations. Surgical volume varied between programs with an average of 13.4 ± 6.4 (SD) cases per month per rotating resident. A significant portion of neurosurgery residency programs in the United States incorporate VA rotations into resident training. Although rotation details vary from program-to-program, shared values include a strong operative experience, independent decision-making, and continuity of care. This analysis provides a comprehensive assessment of VA rotation structure across the country, which is valuable for programs considering implementing a VA rotation into their training program or modifying an existing rotation.


Assuntos
Internato e Residência , Veteranos , Humanos , Estados Unidos , Educação de Pós-Graduação em Medicina , Inquéritos e Questionários , Neurocirurgiões
9.
J Clin Med ; 12(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37835030

RESUMO

BACKGROUND: Surgical intervention is a critical tool to address adult spinal deformity (ASD). Given the evolution of spinal surgical techniques, we sought to characterize developments in ASD correction and barriers impacting clinical outcomes. METHODS: We conducted a literature review utilizing PubMed, Embase, Web of Science, and Google Scholar to examine advances in ASD surgical correction and ongoing challenges from patient and clinician perspectives. ASD procedures were examined across pre-, intra-, and post-operative phases. RESULTS: Several factors influence the effectiveness of ASD correction. Standardized radiographic parameters and three-dimensional modeling have been used to guide operative planning. Complex minimally invasive procedures, targeted corrections, and staged procedures can tailor surgical approaches while minimizing operative time. Further, improvements in osteotomy technique, intraoperative navigation, and enhanced hardware have increased patient safety. However, challenges remain. Variability in patient selection and deformity undercorrection have resulted in heterogenous clinical responses. Surgical complications, including blood loss, infection, hardware failure, proximal junction kyphosis/failure, and pseudarthroses, pose barriers. Although minimally invasive approaches are being utilized more often, clinical validation is needed. CONCLUSIONS: The growing prevalence of ASD requires surgical solutions that can lead to sustained symptom resolution. Leveraging computational and imaging advances will be necessary as we seek to provide comprehensive treatment plans for patients.

10.
Cancers (Basel) ; 14(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36428701

RESUMO

Background: Posterior fossa tumors (PFTs) are a morbid group of central nervous system tumors that most often present in childhood. While early diagnosis is critical to drive appropriate treatment, definitive diagnosis is currently only achievable through invasive tissue collection and histopathological analyses. Machine learning has been investigated as an alternative means of diagnosis. In this systematic review and meta-analysis, we evaluated the primary literature to identify all machine learning algorithms developed to classify and diagnose pediatric PFTs using imaging or molecular data. Methods: Of the 433 primary papers identified in PubMed, EMBASE, and Web of Science, 25 ultimately met the inclusion criteria. The included papers were extracted for algorithm architecture, study parameters, performance, strengths, and limitations. Results: The algorithms exhibited variable performance based on sample size, classifier(s) used, and individual tumor types being investigated. Ependymoma, medulloblastoma, and pilocytic astrocytoma were the most studied tumors with algorithm accuracies ranging from 37.5% to 94.5%. A minority of studies compared the developed algorithm to a trained neuroradiologist, with three imaging-based algorithms yielding superior performance. Common algorithm and study limitations included small sample sizes, uneven representation of individual tumor types, inconsistent performance reporting, and a lack of application in the clinical environment. Conclusions: Artificial intelligence has the potential to improve the speed and accuracy of diagnosis in this field if the right algorithm is applied to the right scenario. Work is needed to standardize outcome reporting and facilitate additional trials to allow for clinical uptake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA