Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 131: 106254, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36528920

RESUMO

Serotonin (5-hydroxytryptamine) is a small molecule that acts both in the central and peripheral nervous system as a neurotransmitter and a hormone, respectively. Serotonin is synthesized via a multi-stage pathway beginning with l-tryptophan, which is converted by an enzyme called tryptophan hydroxylase into L-5-Hydroxytryptophan. It is well-known for its significance in the control of mood, anxiety, depression, and insomnia as well as in normal human functions such as sleep, sexual activity, and appetite. Thus, for medical chemists and pharmaceutical firms, serotonin is one of the most desirable targets. Among the seven different classes of serotonin receptors, the 5-HT1A was one of the first discovered serotonin receptors, and the 5-HT7 was the last addition to the serotonin receptor family. Both the classes were thoroughly examined. 5-HT1A neurotransmission-related dysfunctions are linked to many psychological conditions such as anxiety, depression, and movement disorders. 5-HT7 is a member of the cell surface receptor GPCR superfamily and is regulated by the serotonin neurotransmitter. It has been the focus of intensive research efforts since its discovery, which was prompted by its presence in functionally important regions of the brain. The thalamus and hypothalamus have the highest 5-HT7 receptor densities. They are also found in the hippocampus and cortex at higher densities. Thermoregulation, circadian rhythm, learning and memory, and sleep are all associated with the 5-HT7 receptor. It is also suspected that this receptor may be involved in the control of mood, indicating that it may be a beneficial target for depression treatment. Several differently structured molecules such as aminotetralins, ergolines, arylpiperazines, indolylalkylamines, aporphines, and aryloxyalkyl-amines are known to bind to 5-HT1A and 5-HT7 receptor sites. In brain serotonin receptors 5-HT1A and 5-HT7 are strongly co-expressed in regions involved in depression. However, their functional interaction has not been identified. An overview of the 5-HT1A and 5-HT7 receptor ligands belonging to different chemical groups is mentioned in this review.


Assuntos
Receptores de Serotonina , Serotonina , Humanos , Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Encéfalo/metabolismo , Ansiedade , Sítios de Ligação , Ligantes
2.
Luminescence ; 32(7): 1252-1262, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28512990

RESUMO

Chalcones possess various biological properties, for example, antimicrobial, anti-inflammatory, analgesic, antimalarial, anticancer, antiprotozoal and antitubercular activity. In this study, naphthylchalcone derivatives were synthesized and characterized using 1 H NMR 13 C NMR, Fourier transform infrared and mass techniques. Yields for all derivatives were found to be >90%. Protein-drug interactions influence the absorption, distribution, metabolism and excretion (ADME) properties of a drug. Therefore, to establish whether the synthesized naphthylchalcone derivatives can be used as drugs, their binding interaction toward a serum protein (bovine serum albumin) was investigated using fluorescence, circular dichroism and molecular docking techniques under physiological conditions. Fluorescence quenching of the protein in the presence of naphthylchalcone derivatives, and other derived parameters such as association constants, number of binding sites and static quenching involving confirmed non-covalent binding interactions in the protein-ligand complex were observed. Circular dichroism clearly showed changes in the secondary structure of the protein in the presence of naphthylchalcones, indicating binding between the derivatives and the serum protein. Molecular modelling further confirmed the binding mode of naphthylchalcone derivatives in bovine serum albumin. A site-specific molecular docking study of naphthylchalcone derivatives with serum albumin showed that binding took place primarily in the aromatic low helix and then in subdomain II. The dominance of hydrophobic, hydrophilic and hydrogen bonding was clearly visible and was responsible for stabilization of the complex.


Assuntos
Chalconas/química , Chalconas/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Sítios de Ligação , Chalconas/farmacocinética , Dicroísmo Circular , Simulação por Computador , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Acoplamento Molecular , Naftóis/química , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Environ Sci Pollut Res Int ; 31(23): 34038-34055, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696013

RESUMO

In the printing and textile industries, methylene blue (a cationic azo dye) is commonly used. MB is a well-known carcinogen, and another major issue is its high content in industrial discharge. There are numerous removal methodologies that have been employed to remove it from industrial discharge; however, these current modalities have one or more limitations. In this research, a novel magnetized biochar (γ-Fe2O3-LSB) was synthesized using Lagenaria siceraria peels which were further magnetized via the co-precipitation method. The synthesized γ-Fe2O3-LSB was characterized using FTIR, X-ray diffraction, Raman, SEM-EDX, BET, and vibrating sample magnetometry (VSM) for the analysis of magnetic properties. γ-Fe2O3-LSB showed a reversible type IV isotherm, which is a primary characteristic of mesoporous materials. γ-Fe2O3-LSB had a specific surface area (SBET = 135.30 m2/g) which is greater than that of LSB (SBET = 11.54 m2/g). γ-Fe2O3-LSB exhibits a saturation magnetization value (Ms) of 3.72 emu/g which shows its superparamagnetic nature. The batch adsorption process was performed to analyze the adsorptive removal of MB dye using γ-Fe2O3-LSB. The adsorption efficiency of γ-Fe2O3-LSB for MB was analyzed by varying parameters like the initial concentration of adsorbate (MB), γ-Fe2O3-LSB dose, pH effect, contact time, and temperature. Adsorption isotherm, kinetic, and thermodynamics were also studied after optimizing the protocol. The non-linear Langmuir model fitted the best to explain the adsorption isotherm mechanism and resulting adsorption capacity ( q e =54.55 mg/g). The thermodynamics study showed the spontaneous and endothermic nature, and pseudo-second-order rate kinetics was followed during the adsorption process. Regeneration study showed that γ-Fe2O3-LSB can be used up to four cycles. In laboratory setup, the cost of γ-Fe2O3-LSB synthesis comes out to be 162.75 INR/kg which is low as compared to commercially available adsorbents. The results obtained suggest that magnetic Lagenaria siceraria biochar, which is economical and efficient, can be used as a potential biochar material for industrial applications in the treatment of wastewater.


Assuntos
Carvão Vegetal , Azul de Metileno , Poluentes Químicos da Água , Carvão Vegetal/química , Azul de Metileno/química , Adsorção , Poluentes Químicos da Água/química , Compostos Férricos/química , Acanthaceae/química
4.
Heliyon ; 9(10): e20665, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37818008

RESUMO

Agro-industrial waste is an alarming issue that needs to be addressed. Waste valorization is an effective technique to deal with such effectively. Synthesis of biochar from fruit waste is one of the emerging approaches for adsorption, energy storage, air purification, catalysis, and biogas production trending these days. Magnetized Citrus limetta biochar (MCLB) was synthesized from Citrus limetta peels and was magnetized using iron oxide. Magnetization of biochar increases its functionalities as well as makes its separation easy. The removal of Methylene Blue (MB) dye from an aqueous solution is achieved through the use of MCLB. Methylene Blue is a prominent and widely used cationic-azo dye in the textile and printing industries. The accumulation of MB in wastewater is the major problem as MB is reported as a carcinogenic agent. The removal of MB dye with MCLB was analyzed by adsorption studies, wherein the effect of factors influencing adsorption such as initial concentration of MB dye, MCLB dosage, the effect of pH, contact time, and adsorption isotherms were studied. Characterization of MCLB was carried out using various techniques, such as FTIR, VSM, XRD, SEM, RAMAN, and Zeta potential. The adsorption isotherm mechanism was well explained with the non-linear Langmuir isotherm model resulting in a good adsorption capacity (qe = 41.57 mg/g) of MCLB when MB (co = 60 mg/L, pH ~ 6.8, T = 273K). The thermodynamics analysis revealed that MB's spontaneous and endothermic adsorption onto the MCLB surface followed pseudo-second-order kinetics. The results obtained from this study suggest that the magnetized biochar derived from Citrus limetta peels has a wide range of potential applications in the treatment of dyeing wastewater.

5.
J Biomol Struct Dyn ; 41(7): 3002-3013, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35220922

RESUMO

Vildagliptin (VDG)is a frontier drug for diabetes mellitus. It is prescribed both in the monotherapy as well as in an amalgamation with other antidiabetic drugs. Drug-serum protein binding is an essential parameter which influences ADME properties of the drug. In current study, binding of VDG with serum protein (bovine serum albumin: BSA) was investigated using multi-spectroscopic techniques. A computational approach was also employed to identify the binding affinity of VDG with BSA at both Sudlow I and II sites. An enzyme activity assay specific for esterase was also investigated to know the post-binding consequences of VDG with BSA. Fluorescence spectra of BSA samples treated with VDG shows static quenching with binding parameters for VDG-BSA complex show single class of equivalent binding stoichiometry(n = 1.331) and binding constant 1.1 x 104M-1 at 298.15 K. The binding constant indicates important role of non-polar interactions in the binding process. Fluorescence resonance energy transfer (FRET) analysis of VDG absorption spectra and emission spectrum of BSA confirmed no significant resonance in energy transfer. Synchronous fluorescence of BSA after binding with VDG show maximum changes in emission intensity at tryptophan (Trp) residues. Post binding with VDG, BSA conformation changes as suggested by circular dichorism (CD) spectra of BSA and this lead to enhanced protein stability as indicated by a thermal melting curve of BSA.Communicated by Ramaswamy H. Sarma.


Assuntos
Luminescência , Soroalbumina Bovina , Soroalbumina Bovina/química , Ligação Proteica , Sítios de Ligação , Espectrometria de Fluorescência , Vildagliptina , Dicroísmo Circular , Transferência Ressonante de Energia de Fluorescência
6.
J Biomol Struct Dyn ; 40(10): 4516-4531, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33317405

RESUMO

Human carbonic anhydrase IX (hCA IX) is a promising target for the development of potential anticancer agents. In the current study, pharmacophore and 3D-QSAR models have been developed using SLC-0111 derivatives. The developed models have been further utilized for the virtual screening process to develop potent hCA IX inhibitors. Thirteen different models have been developed by employing various combinations of training and test set molecules. Based on this, a model, AADDR.135, comprising two H-bond acceptors, two H-bond donors and one aromatic ring, has been found as the best QSAR model. The proposed model exhibits high robustness (R2 = 0.9789), with good predictive ability (Q2 = 0.6872). An external library of drug-like compounds (∼10000 molecules) imported from the ZINC15 database has been screened over the model AADDR.135. In total, 1601 compounds were obtained as hits. Molecular docking studies and molecular dynamics simulations have been performed on the obtained hits and, based on these computations, two unique molecules have been identified as potential hCA IX inhibitors. These show higher binding energies compared to the parent molecule and its most potent analogue.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Anidrase Carbônica IX/química , Humanos , Simulação de Acoplamento Molecular
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 244: 118803, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32829155

RESUMO

Phosmet exerts its neurotoxicity by inhibiting acetylcholinesterase that catalyzes the degradation of acetylcholine (a neurotransmitter). Serum proteins are known to influence the biodistribution of various endogenous and exogenous compounds. In the present study, the binding interactions of phosmet with bovine serum albumin (BSA) was investigated to determine the free concentration of phosmet for its neurotoxicity. The binding mechanism was studied using fluorescence, UV-Vis absorption spectroscopy, circular dichroism (CD), and molecular docking techniques. UV-Vis absorption data showed an increase in absorbance of BSA upon binding with phosmet with a slight red-shift in the peak around 280 nm. Intrinsic fluorescence of BSA was quenched in the presence of phosmet. The quenching was observed to be inversely correlated to the temperature that indicated the formation of ground state non-fluorescent complex (static quenching). Binding constant values and n values for the binding of phosmet with BSA at three different temperatures confirmed non-covalent binding interactions with a single set of equivalent binding sites. Thermodynamic parameters ∆G (-137.40 ± 3.58 kJ mol-1); ΔH (-16.33 ± 5.28 kJ mol-1) and ΔS(-469 ± 12.45 kJ mol-1) confirmed that the binding was spontaneous and non-covalent interactions like electrostatic, hydrogen bonding and van der Waals forces played an important role in the binding. The CD data indicated the conformational change in BSA upon binding with phosmet which resulted in a change in the melting temperature. Molecular docking presented the binding model for BSA-phosmet complex and displayed that non-covalent interactions played a significant role in the binding mechanism.


Assuntos
Fosmet , Soroalbumina Bovina , Sítios de Ligação , Dicroísmo Circular , Simulação de Acoplamento Molecular , Ligação Proteica , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Termodinâmica , Distribuição Tecidual
8.
Heliyon ; 6(5): e03517, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32426531

RESUMO

The Zn+2 HDACIs show promising anticancer activity. Allyl mercaptan (AM), a metastabilzed monomeric form of diallyl disulphide (DADS) shows better HDACI activity. The present work screens a dataset of aryl AM derivatives 1(a-g) for potential HDACI action via in silico models. DFT calculations predicted the geometrical parameters and frontier orbital calculations suggested better chemical reactivity. Negative chemical potential and NBO hyper conjugative interactions predicted their chemical stability. ADME study confirmed favourable drug likeliness. Molecular docked models suggested the formation of coordinate bond between sulphur of allylmercaptan and Zn2+ cofactor of HDAC8. Besides, models also predicted the dominance of hydrophobic interactions. The aryl AM analogs docked perfectly with HDAC3 as well. The glide score and S-Zn distance of compounds 1a, 1f and 1g were found to be better than allylmercaptan. Therefore, the designed aryl AM analogs filtered as better HDACIs. These could be further used for design and synthesis of new improved HDACIs.

9.
Int J Biol Macromol ; 150: 1053-1060, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31739068

RESUMO

Environmental factors like ionizing radiation induced generation of reactive oxygen species (ROS) cause macromolecular damage under physiological conditions. Proteins are the potential targets of ROS induced oxidative damage because of their abundance and their critical functions in the biological systems. The present study investigates the protective potential of ethyl pyruvate (EP) against ionizing radiation induced oxidative damage of bovine serum albumin (BSA) using spectroscopic, biochemical and SDS-PAGE techniques. Spectroscopic data shows that EP prevents the build up of protein damage markers like bityrosine formation and oxidation of tryptophan. Protein melting studies shows that the melting temperature (Tm) of the irradiated protein does not change significantly in the presence of EP. Biochemical assays indicate that ionizing radiation causes the generation of carbonyls and malondialdehyde and the loss of thiol content in proteins that is prevented by EP. The SDS-PAGE profile of gamma irradiated BSA shows the radioprotective effect of EP. These results indicate the radiation induced oxidative and molecular changes in the protein and that the EP protected the BSA from these modifications. Therefore, these results imply that EP has a good antiradical property and hence it can be proposed as a good radioprotective agent.


Assuntos
Raios gama , Piruvatos/química , Protetores contra Radiação/química , Soroalbumina Bovina/química , Animais , Bovinos , Espécies Reativas de Oxigênio/química
10.
Chem Biol Interact ; 332: 109313, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33171137

RESUMO

DNA is the store house of all necessary hereditary information for growth of cells and tissues. Physiological functionality of DNA depends on its 3D helical structure and any distortion in a structure may lead to mutation and genomic instability that may translate into disease like cancer. In order to prevent DNA damage, an exogenous compound is required that can either scavenge the excess free radicals or enhance the structural integrity of DNA through binding. In the present study, the binding mechanism of ethyl pyruvate (EP) with DNA models using different spectroscopic techniques was investigated for their structural integrity. Besides, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays were performed to determine the antioxidant scavenging of EP. Plasmid DNA relaxation assay was performed to assess the radioprotection efficacy of EP in the plasmid DNA. Circular dichroism (CD) and UV-Vis absorbance spectroscopic data confirmed the conformation change in ctDNA upon binding with EP. The molecular docking visualized that EP stacks between the DNA bases with a glide score of -2.117 kcalmol while EP binds in the minor groove region of DNA with the glide score of -1.414 kcalmol . DPPH and FRAP data confirmed that EP scavenges significantly radicals at higher concentrations. In vitro radioprotection study in plasmid DNA pBR322 showed that EP retained the supercoiled form of plasmid DNA at 50 Gy radiation dose.


Assuntos
DNA/metabolismo , Piruvatos/farmacologia , Protetores contra Radiação/farmacologia , Animais , Antioxidantes/metabolismo , Compostos de Bifenilo/química , Bovinos , Dicroísmo Circular , Recuperação de Fluorescência Após Fotodegradação , Ferro/química , Simulação de Acoplamento Molecular , Desnaturação de Ácido Nucleico , Picratos/química , Plasmídeos/metabolismo , Espectrofotometria Ultravioleta , Temperatura
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 171: 246-257, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27541797

RESUMO

Two novel Schiff base ligands H2L1 and H2L2 have been synthesized by condensation reaction of amine derivative of 1,2,4-triazole moiety with 2-hydroxy-4-methoxybenzaldehyde. Co(II), Ni(II), Cu(II) and Zn(II) of the synthesized Schiff bases were prepared by using a molar ratio of ligand:metal as 1:1. The structure of the Schiff bases and synthesized metal complexes were established by 1H NMR, UV-Vis, IR, Mass spectrometry and molar conductivity. The thermal stability of the complexes was study by TGA. Fluorescence quenching mechanism of metal complexes 1-4 show that Zn(II) and Cu(II) complex binds more strongly to BSA. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. The spectral data shows that the ligands behaves as binegative tridentate. On the basis of the spectral studies, TGA and DFT data an octahedral geometry has been assigned for Co(II), Ni(II), square planar for Cu(II) and tetrahedral for Zn(II) complexes. The anticancer activity were screened against human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2). Result indicates that metal complexes shows increase cytotoxicity in proliferation to cell lines as compared to free ligand.


Assuntos
Complexos de Coordenação/síntese química , Teoria Quântica , Bases de Schiff/síntese química , Soroalbumina Bovina/metabolismo , Triazóis/síntese química , Animais , Bovinos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Fluorescência , Células Hep G2 , Humanos , Ligantes , Células MCF-7 , Magnetismo , Espectrometria de Massas , Conformação Molecular , Ligação Proteica/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Bases de Schiff/química , Bases de Schiff/farmacologia , Espectrofotometria Infravermelho , Temperatura , Termogravimetria , Triazóis/química , Triazóis/farmacologia
12.
Chem Cent J ; 11(1): 132, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29256159

RESUMO

Dihydrofolate reductase (DHFR) is an important enzyme for de novo synthesis of nucleotides in Plasmodium falciparum and it is essential for cell proliferation. DHFR is a well known antimalarial target for drugs like cycloguanil and pyrimethamine which target its inhibition for their pharmacological actions. However, the clinical efficacies of these antimalarial drugs have been compromising due to multiple mutations occurring in DHFR that lead to drug resistance. In this background, we have designed 22 s -triazine compounds using the best five parameters based 3D-QSAR model built by using genetic function approximation. In-silico designed compounds were further filtered to 6 compounds based upon their ADME properties, docking studies and predicted minimum inhibitory concentrations (MIC). Out of 6 compounds, 3 compounds were synthesized in good yield over 95% and characterized using IR, 1HNMR, 13CNMR and mass spectroscopic techniques. Parasitemia inhibition assay was used to evaluate the antimalarial activity of s -triazine compounds against 3D7 strain of P. falciparum. All the three compounds (7, 13 and 18) showed 30 times higher potency than cycloguanil (standard drug). It was observed that compound 18 was the most active while the compound 13 was the least active. On the closer inspection of physicochemical properties and SAR, it was observed that the presence of electron donating groups, number of hydrogen bond formation, lipophilicity of ligands and coulson charge of nitrogen atom present in the triazine ring enhances the DHFR inhibition significantly. This study will contribute to further endeavours of more potent DHFR inhibitors.

13.
Chem Biol Drug Des ; 77(1): 57-62, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20958921

RESUMO

This study presents a quantitative structure activity relationships (QSAR) study on a pool of 19 bio-active s-triazine compounds. Molecular descriptors, kappa {¹κ}, chi {³χ}, x component of the dipole moment (µ(x) ), Coulson charge (q(N) ) on the nitrogen atom sandwiched between the two substituted carbons of the triazine ring, and total energy (E(T) ) obtained from AM1 calculations provide valuable information and have a significant role in the assessment of dihydrofolate reductase (DHFR) inhibitory activity of the compounds. By using the Genetic Function Approach (GFA) technique, five QSAR models have been drawn up with the help of these calculated descriptors and DHFR inhibitory activity data of the molecules. Among the obtained QSAR models presented in the study, statistically the most significant one is a four-parameter linear equation with the Lack-of-Fit value 0.5624, squared correlation coefficient R² value of 0.7697, and the squared cross-validated correlation coefficient R²(CV) value of 0.6469. The results are discussed in light of the main factors that influence the DHFR inhibitory activity.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Triazinas , Antimaláricos/química , Antimaláricos/farmacologia , Simulação por Computador , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/farmacologia , Malária Falciparum/tratamento farmacológico , Modelos Moleculares , Plasmodium falciparum/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Triazinas/síntese química , Triazinas/farmacologia
14.
Org Biomol Chem ; 4(5): 886-95, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16493473

RESUMO

Pyruvic acid and its isomers, including the enol tautomers and enantiomeric lactone structures, have been investigated at the B3LYP/6-311 + + G(3df,3pd) level, and it is found that a keto form with trans C(methyl)C(keto)C(acid)O(hydroxyl) and cis C(keto)C(acid)OH, and with one methyl hydrogen in a synperiplanar position with respect to the keto oxygen, is the most stable. This agrees with previous theoretical and experimental determinations. However, no minimum corresponding to protonated pyruvate could be located, although previous semiempirical calculations had found such structures. Decarboxylation by different possible routes was then studied. It was found that the direct formation of acetaldehyde, the most stable of the resulting C2H4O isomers, via a four-center-like transition state is the most feasible, although there is a high activation barrier of 70 kcal mol(-1). In contrast to semiempirical calculations, it is found that no hydroxyethylidene-carbon dioxide complex exists as a product, and no transition state leading to the dissociation to hydroxethylidene could be located.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA