Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 158(1): 014104, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36610956

RESUMO

The Hellmann-Feynman (HF) theorem provides a way to compute forces directly from the electron density, enabling efficient force calculations for large systems through machine learning (ML) models for the electron density. The main issue holding back the general acceptance of the HF approach for atom-centered basis sets is the well-known Pulay force which, if naively discarded, typically constitutes an error upward of 10 eV/Å in forces. In this work, we demonstrate that if a suitably augmented Gaussian basis set is used for density functional calculations, the Pulay force can be suppressed, and HF forces can be computed as accurately as analytical forces with state-of-the-art basis sets, allowing geometry optimization and molecular dynamics to be reliably performed with HF forces. Our results pave a clear path forward for the accurate and efficient simulation of large systems using ML densities and the HF theorem.

2.
J Chem Phys ; 158(11): 114801, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948839

RESUMO

We describe a new open-source Python-based package for high accuracy correlated electron calculations using quantum Monte Carlo (QMC) in real space: PyQMC. PyQMC implements modern versions of QMC algorithms in an accessible format, enabling algorithmic development and easy implementation of complex workflows. Tight integration with the PySCF environment allows for a simple comparison between QMC calculations and other many-body wave function techniques, as well as access to high accuracy trial wave functions.

3.
J Chem Phys ; 154(3): 034101, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33499613

RESUMO

In this article, the authors present a technique using variational Monte Carlo to solve for excited states of electronic systems. This technique is based on enforcing orthogonality to lower energy states, which results in a simple variational principle for the excited states. Energy optimization is then used to solve for the excited states. This technique is applied to the well-characterized benzene molecule, in which ∼10 000 parameters are optimized for the first 12 excited states. Agreement within ∼0.2 eV is obtained with higher scaling coupled cluster methods; small disagreements with experiment are likely due to vibrational effects.

4.
J Chem Phys ; 149(23): 234104, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30579315

RESUMO

The accuracy and efficiency of ab initio Quantum Monte Carlo (QMC) algorithms benefit greatly from compact variational trial wave functions that accurately reproduce ground state properties of a system. We investigate the possibility of using multi-Slater-Jastrow trial wave functions with non-orthogonal determinants by optimizing identical single particle orbitals independently in separate determinants. As a test case, we compute variational and fixed-node diffusion Monte Carlo (FN-DMC) energies of a C2 molecule. For a given multi-determinant expansion, we find that this non-orthogonal orbital optimization results in a consistent improvement in the variational energy and the FN-DMC energy on the order of a few tenths of an eV. In some cases, fewer non-orthogonal determinants are required compared to orthogonal ones in order to achieve similar accuracy in FN-DMC. Our calculations indicate that trial wave functions with non-orthogonal determinants can improve computed energies in a QMC calculation when compared to their orthogonal counterparts.

5.
PLoS One ; 19(2): e0297502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358990

RESUMO

Accurately modeling large biomolecules such as DNA from first principles is fundamentally challenging due to the steep computational scaling of ab initio quantum chemistry methods. This limitation becomes even more prominent when modeling biomolecules in solution due to the need to include large numbers of solvent molecules. We present a machine-learned electron density model based on a Euclidean neural network framework that includes a built-in understanding of equivariance to model explicitly solvated double-stranded DNA. By training the machine learning model using molecular fragments that sample the key DNA and solvent interactions, we show that the model predicts electron densities of arbitrary systems of solvated DNA accurately, resolves polarization effects that are neglected by classical force fields, and captures the physics of the DNA-solvent interaction at the ab initio level.


Assuntos
DNA , Redes Neurais de Computação , Solventes
6.
Sci Rep ; 5: 16493, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26572103

RESUMO

Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or "quakes". We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects "tuned critical" behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA