Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Blood ; 140(15): 1723-1734, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-35977098

RESUMO

Red blood cell (RBC) transfusion is one of the most common medical treatments, with more than 10 million units transfused per year in the United States alone. Alloimmunization to foreign Rh proteins (RhD and RhCE) on donor RBCs remains a challenge for transfusion effectiveness and safety. Alloantibody production disproportionately affects patients with sickle cell disease who frequently receive blood transfusions and exhibit high genetic diversity in the Rh blood group system. With hundreds of RH variants now known, precise identification of Rh antibody targets is hampered by the lack of appropriate reagent RBCs with uncommon Rh antigen phenotypes. Using a combination of human-induced pluripotent stem cell (iPSC) reprogramming and gene editing, we designed a renewable source of cells with unique Rh profiles to facilitate the identification of complex Rh antibodies. We engineered a very rare Rh null iPSC line lacking both RHD and RHCE. By targeting the AAVS1 safe harbor locus in this Rh null background, any combination of RHD or RHCE complementary DNAs could be reintroduced to generate RBCs that express specific Rh antigens such as RhD alone (designated D--), Goa+, or DAK+. The RBCs derived from these iPSCs (iRBCs) are compatible with standard laboratory assays used worldwide and can determine the precise specificity of Rh antibodies in patient plasma. Rh-engineered iRBCs can provide a readily accessible diagnostic tool and guide future efforts to produce an alternative source of rare RBCs for alloimmunized patients.


Assuntos
Antígenos de Grupos Sanguíneos , Células-Tronco Pluripotentes , Medicina Transfusional , Alelos , Antígenos de Grupos Sanguíneos/genética , Humanos , Sistema do Grupo Sanguíneo Rh-Hr/genética
2.
Curr Opin Hematol ; 28(5): 308-314, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34397590

RESUMO

PURPOSE OF REVIEW: Megakaryocytes are rare hematopoietic cells that play an instrumental role in hemostasis, and other important biological processes such as immunity and wound healing. With the advent of cell reprogramming technologies and advances in differentiation protocols, it is now possible to obtain megakaryocytes from any pluripotent stem cell (PSC) via hematopoietic induction. Here, we review recent advances in PSC-derived megakaryocyte (iMK) technology, focusing on platform validation, disease modeling and current limitations. RECENT FINDINGS: A comprehensive study confirmed that iMK can recapitulate many transcriptional and functional aspects of megakaryocyte and platelet biology, including variables associated with complex genetic traits such as sex and race. These findings were corroborated by several pathological models in which iMKs revealed molecular mechanisms behind inherited platelet disorders and assessed the efficacy of novel pharmacological interventions. However, current differentiation protocols generate primarily embryonic iMK, limiting the clinical and translational potential of this system. SUMMARY: iMK are strong candidates to model pathologic mutations involved in platelet defects and develop innovative therapeutic strategies. Future efforts on generating definitive hematopoietic progenitors would improve current platelet generation protocols and expand our capacity to model neonatal and adult megakaryocyte disorders.


Assuntos
Transtornos Plaquetários , Diferenciação Celular , Doenças Genéticas Inatas , Hematopoese , Modelos Genéticos , Células-Tronco Pluripotentes/metabolismo , Animais , Transtornos Plaquetários/genética , Transtornos Plaquetários/metabolismo , Transtornos Plaquetários/terapia , Plaquetas/metabolismo , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/terapia , Humanos , Megacariócitos/metabolismo
3.
Blood ; 131(17): 1960-1973, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29519807

RESUMO

Naturally occurring, large deletions in the ß-globin locus result in hereditary persistence of fetal hemoglobin, a condition that mitigates the clinical severity of sickle cell disease (SCD) and ß-thalassemia. We designed a clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) strategy to disrupt a 13.6-kb genomic region encompassing the δ- and ß-globin genes and a putative γ-δ intergenic fetal hemoglobin (HbF) silencer. Disruption of just the putative HbF silencer results in a mild increase in γ-globin expression, whereas deletion or inversion of a 13.6-kb region causes a robust reactivation of HbF synthesis in adult erythroblasts that is associated with epigenetic modifications and changes in chromatin contacts within the ß-globin locus. In primary SCD patient-derived hematopoietic stem/progenitor cells, targeting the 13.6-kb region results in a high proportion of γ-globin expression in erythroblasts, increased HbF synthesis, and amelioration of the sickling cell phenotype. Overall, this study provides clues for a potential CRISPR/Cas9 genome editing approach to the therapy of ß-hemoglobinopathies.


Assuntos
Anemia Falciforme , Sistemas CRISPR-Cas , Hemoglobina Fetal , Edição de Genes , Loci Gênicos , Células-Tronco Hematopoéticas/metabolismo , Globinas beta/genética , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Anemia Falciforme/patologia , Anemia Falciforme/terapia , Linhagem Celular , Hemoglobina Fetal/biossíntese , Hemoglobina Fetal/genética , Células-Tronco Hematopoéticas/patologia , Humanos , Globinas beta/metabolismo
4.
Mol Ther ; 27(1): 137-150, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30424953

RESUMO

Editing the ß-globin locus in hematopoietic stem cells is an alternative therapeutic approach for gene therapy of ß-thalassemia and sickle cell disease. Using the CRISPR/Cas9 system, we genetically modified human hematopoietic stem and progenitor cells (HSPCs) to mimic the large rearrangements in the ß-globin locus associated with hereditary persistence of fetal hemoglobin (HPFH), a condition that mitigates the clinical phenotype of patients with ß-hemoglobinopathies. We optimized and compared the efficiency of plasmid-, lentiviral vector (LV)-, RNA-, and ribonucleoprotein complex (RNP)-based methods to deliver the CRISPR/Cas9 system into HSPCs. Plasmid delivery of Cas9 and gRNA pairs targeting two HPFH-like regions led to high frequency of genomic rearrangements and HbF reactivation in erythroblasts derived from sorted, Cas9+ HSPCs but was associated with significant cell toxicity. RNA-mediated delivery of CRISPR/Cas9 was similarly toxic but much less efficient in editing the ß-globin locus. Transduction of HSPCs by LVs expressing Cas9 and gRNA pairs was robust and minimally toxic but resulted in poor genome-editing efficiency. Ribonucleoprotein (RNP)-based delivery of CRISPR/Cas9 exhibited a good balance between cytotoxicity and efficiency of genomic rearrangements as compared to the other delivery systems and resulted in HbF upregulation in erythroblasts derived from unselected edited HSPCs.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/fisiologia , Terapia Genética/métodos , Células-Tronco Hematopoéticas/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Anemia Falciforme/terapia , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Células-Tronco Hematopoéticas/citologia , Hemoglobinopatias/genética , Hemoglobinopatias/metabolismo , Hemoglobinopatias/terapia , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Plasmídeos/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Talassemia beta/genética , Talassemia beta/metabolismo , Talassemia beta/terapia
5.
Blood ; 127(5): 565-71, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26702064

RESUMO

Factor VII (FVII) deficiency is a rare autosomal recessive bleeding disorder treated by infusion of fresh-frozen plasma, plasma-derived FVII concentrates and low-dose recombinant activated FVII. Clinical data suggest that a mild elevation of plasma FVII levels (>10% normal) results in improved hemostasis. Research dogs with a G96E missense FVII mutation (FVII-G96E) have <1% FVII activity. By western blot, we show that they have undetectable plasmatic antigen, thus representing the most prevalent type of human FVII deficiency (low antigen/activity). In these dogs, we determine the feasibility of a gene therapy approach using liver-directed, adeno-associated viral (AAV) serotype 8 vector delivery of a canine FVII (cFVII) zymogen transgene. FVII-G96E dogs received escalating AAV doses (2E11 to 4.95E13 vector genomes [vg] per kg). Clinically therapeutic expression (15% normal) was attained with as low as 6E11 vg/kg of AAV and has been stable for >1 year (ongoing) without antibody formation to the cFVII transgene. Sustained and supraphysiological expression of 770% normal was observed using 4.95E13 vg/kg of AAV (2.6 years, ongoing). No evidence of pathological activation of coagulation or detrimental animal physiology was observed as platelet counts, d-dimer, fibrinogen levels, and serum chemistries remained normal in all dogs (cumulative 6.4 years). We observed a transient and noninhibitory immunoglobulin G class 2 response against cFVII only in the dog receiving the highest AAV dose. In conclusion, in the only large-animal model representing the majority of FVII mutation types, our data are first to demonstrate the feasibility, safety, and long-term duration of AAV-mediated correction of FVII deficiency.


Assuntos
Deficiência do Fator VII/genética , Deficiência do Fator VII/terapia , Fator VII/genética , Terapia Genética , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Precursores de Proteínas/genética , Adenoviridae/genética , Animais , Cães , Deficiência do Fator VII/sangue , Expressão Gênica , Vetores Genéticos/administração & dosagem , Células HEK293 , Humanos , Mutação Puntual , Transgenes
6.
Blood ; 124(7): 1157-65, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24957146

RESUMO

Recombinant activated human factor VII (rhFVIIa) is an established hemostatic agent in hemophilia, but its mechanism of action remains unclear. Although tissue factor (TF) is its natural receptor, rhFVIIa also interacts with the endothelial protein C receptor (EPCR) through its γ-carboxyglutamic acid (Gla) domain, with unknown hemostatic consequences in vivo. Here, we study whether EPCR facilitates rhFVIIa hemostasis in hemophilia using a mouse model system. Mouse activated FVII (mFVIIa) is functionally homologous to rhFVIIa, but binds poorly to mouse EPCR (mEPCR). We modified mFVIIa to gain mEPCR binding using 3 amino acid changes in its Gla domain (L4F/L8M/W9R). The resulting molecule mFVIIa-FMR specifically bound mEPCR in vitro and in vivo and was identical to mFVIIa with respect to TF affinity and procoagulant functions. In macrovascular injury models, hemophilic mice administered mFVIIa-FMR exhibited superior hemostatic activity compared with mFVIIa. This was abolished by blocking mEPCR and was absent in ex vivo whole blood coagulation assays, implicating a specific mFVIIa-FMR and endothelial mEPCR interaction. Because mFVIIa-FMR models the TF-dependent and EPCR binding properties of rhFVIIa, our data unmask a novel contribution of EPCR on the action of rhFVIIa administration in hemophilia, prompting the rational design of improved and safer rhFVIIa therapeutics.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Fator VIIa/farmacologia , Hemofilia A/tratamento farmacológico , Hemostasia/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Ácido 1-Carboxiglutâmico/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Sítios de Ligação/genética , Ligação Competitiva , Coagulação Sanguínea/efeitos dos fármacos , Fatores de Coagulação Sanguínea/genética , Células CHO , Cricetinae , Cricetulus , Fator VIIa/administração & dosagem , Fator VIIa/genética , Hemofilia A/sangue , Humanos , Cinética , Masculino , Camundongos Endogâmicos C57BL , Ligação Proteica , Receptores de Superfície Celular/genética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Tromboelastografia , Tromboplastina/metabolismo
7.
Cells ; 13(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38786024

RESUMO

In recent years, clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) protein have emerged as a revolutionary gene editing tool to treat inherited disorders affecting different organ systems, such as blood and muscles. Both hematological and neuromuscular genetic disorders benefit from genome editing approaches but face different challenges in their clinical translation. The ability of CRISPR/Cas9 technologies to modify hematopoietic stem cells ex vivo has greatly accelerated the development of genetic therapies for blood disorders. In the last decade, many clinical trials were initiated and are now delivering encouraging results. The recent FDA approval of Casgevy, the first CRISPR/Cas9-based drug for severe sickle cell disease and transfusion-dependent ß-thalassemia, represents a significant milestone in the field and highlights the great potential of this technology. Similar preclinical efforts are currently expanding CRISPR therapies to other hematologic disorders such as primary immunodeficiencies. In the neuromuscular field, the versatility of CRISPR/Cas9 has been instrumental for the generation of new cellular and animal models of Duchenne muscular dystrophy (DMD), offering innovative platforms to speed up preclinical development of therapeutic solutions. Several corrective interventions have been proposed to genetically restore dystrophin production using the CRISPR toolbox and have demonstrated promising results in different DMD animal models. Although these advances represent a significant step forward to the clinical translation of CRISPR/Cas9 therapies to DMD, there are still many hurdles to overcome, such as in vivo delivery methods associated with high viral vector doses, together with safety and immunological concerns. Collectively, the results obtained in the hematological and neuromuscular fields emphasize the transformative impact of CRISPR/Cas9 for patients affected by these debilitating conditions. As each field suffers from different and specific challenges, the clinical translation of CRISPR therapies may progress differentially depending on the genetic disorder. Ongoing investigations and clinical trials will address risks and limitations of these therapies, including long-term efficacy, potential genotoxicity, and adverse immune reactions. This review provides insights into the diverse applications of CRISPR-based technologies in both preclinical and clinical settings for monogenic blood disorders and muscular dystrophy and compare advances in both fields while highlighting current trends, difficulties, and challenges to overcome.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Terapia Genética , Humanos , Terapia Genética/métodos , Sistemas CRISPR-Cas/genética , Animais , Edição de Genes/métodos , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/genética , Ensaios Clínicos como Assunto , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética
8.
Blood Adv ; 8(6): 1449-1463, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38290102

RESUMO

ABSTRACT: During development, erythroid cells are produced through at least 2 distinct hematopoietic waves (primitive and definitive), generating erythroblasts with different functional characteristics. Human induced pluripotent stem cells (iPSCs) can be used as a model platform to study the development of red blood cells (RBCs) with many of the differentiation protocols after the primitive wave of hematopoiesis. Recent advances have established that definitive hematopoietic progenitors can be generated from iPSCs, creating a unique situation for comparing primitive and definitive erythrocytes derived from cell sources of identical genetic background. We generated iPSCs from healthy fetal liver (FL) cells and produced isogenic primitive or definitive RBCs which were compared directly to the FL-derived RBCs. Functional assays confirmed differences between the 2 programs, with primitive RBCs showing a reduced proliferation potential, larger cell size, lack of Duffy RBC antigen expression, and higher expression of embryonic globins. Transcriptome profiling by scRNA-seq demonstrated high similarity between FL- and iPSC-derived definitive RBCs along with very different gene expression and regulatory network patterns for primitive RBCs. In addition, iPSC lines harboring a known pathogenic mutation in the erythroid master regulator KLF1 demonstrated phenotypic changes specific to definitive RBCs. Our studies provide new insights into differences between primitive and definitive erythropoiesis and highlight the importance of ontology when using iPSCs to model genetic hematologic diseases. Beyond disease modeling, the similarity between FL- and iPSC-derived definitive RBCs expands potential applications of definitive RBCs for diagnostic and transfusion products.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Eritropoese/genética , Eritrócitos , Diferenciação Celular/genética , Eritroblastos/metabolismo
9.
Nat Commun ; 15(1): 7787, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242546

RESUMO

Most gene functions have been discovered through phenotypic observations under loss of function experiments that lack temporal control. However, cell signaling relies on limited transcriptional effectors, having to be re-used temporally and spatially within the organism. Despite that, the dynamic nature of signaling pathways have been overlooked due to the difficulty on their assessment, resulting in important bottlenecks. Here, we have utilized the rapid and synchronized developmental transitions occurring within the zebrafish embryo, in conjunction with custom NF-kB reporter embryos driving destabilized fluorophores that report signaling dynamics in real time. We reveal that NF-kB signaling works as a clock that controls the developmental progression of hematopoietic stem and progenitor cells (HSPCs) by two p65 activity waves that inhibit cell cycle. Temporal disruption of each wave results in contrasting phenotypic outcomes: loss of HSPCs due to impaired specification versus proliferative expansion and failure to delaminate from their niche. We also show functional conservation during human hematopoietic development using iPSC models. Our work identifies p65 as a previously unrecognized contributor to cell cycle regulation, revealing why and when pro-inflammatory signaling is required during HSPC development. It highlights the importance of considering and leveraging cell signaling as a temporally dynamic entity.


Assuntos
Ciclo Celular , Células-Tronco Hematopoéticas , Transdução de Sinais , Peixe-Zebra , Animais , Humanos , Diferenciação Celular , Proliferação de Células , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Fator de Transcrição RelA/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
10.
Stem Cell Reports ; 19(9): 1264-1276, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39214082

RESUMO

Tropomyosins coat actin filaments to impact actin-related signaling and cell morphogenesis. Genome-wide association studies have linked Tropomyosin 1 (TPM1) with human blood trait variation. TPM1 has been shown to regulate blood cell formation in vitro, but it remains unclear how or when TPM1 affects hematopoiesis. Using gene-edited induced pluripotent stem cell (iPSC) model systems, we found that TPM1 knockout augmented developmental cell state transitions and key signaling pathways, including tumor necrosis factor alpha (TNF-α) signaling, to promote hemogenic endothelial (HE) cell specification and hematopoietic progenitor cell (HPC) production. Single-cell analyses revealed decreased TPM1 expression during human HE specification, suggesting that TPM1 regulated in vivo hematopoiesis via similar mechanisms. Analyses of a TPM1 gene trap mouse model showed that TPM1 deficiency enhanced HE formation during embryogenesis, without increasing the number of hematopoietic stem cells. These findings illuminate novel effects of TPM1 on developmental hematopoiesis.


Assuntos
Diferenciação Celular , Hematopoese , Células-Tronco Hematopoéticas , Tropomiosina , Tropomiosina/metabolismo , Tropomiosina/genética , Hematopoese/genética , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Hemangioblastos/metabolismo , Hemangioblastos/citologia , Transdução de Sinais , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Fator de Necrose Tumoral alfa/metabolismo
11.
Blood ; 117(15): 3974-82, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21325603

RESUMO

Catalytic domain variants of activated factor VII (FVIIa) with enhanced hemostatic properties are highly attractive for the treatment of bleeding disorders via gene-based therapy. To explore this in a hemophilic mouse model, we characterized 2 variants of murine activated FVII (mFVIIa-VEAY and mFVIIa-DVQ) with modified catalytic domains, based on recombinant human FVIIa (rhFVIIa) variants. Using purified recombinant proteins, we showed that murine FVIIa (mFVIIa) and variants had comparable binding to human and murine tissue factor (TF) and exhibited similar extrinsic coagulant activity. In vitro in the absence of TF, the variants showed a 6- to 17-fold enhanced proteolytic and coagulant activity relative to mFVIIa, but increased inactivation by antithrombin. Gene delivery of mFVIIa-VEAY resulted in long-term, effective hemostasis at 5-fold lower expression levels relative to mFVIIa in hemophilia A mice or in hemophilia B mice with inhibitors to factor IX. However, expression of mFVIIa-VEAY at 14-fold higher than therapeutic levels resulted in a progressive mortality to 70% within 6 weeks after gene delivery. These results are the first demonstration of the hemostatic efficacy of continuous expression, in the presence or absence of inhibitors, of a high-activity gene-based FVIIa variant in an animal model of hemophilia.


Assuntos
Domínio Catalítico/genética , Fator VIIa/genética , Terapia Genética/métodos , Hemofilia A/terapia , Hemostasia/fisiologia , Animais , Linhagem Celular , Dependovirus/genética , Modelos Animais de Doenças , Fator VIIa/química , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética/mortalidade , Hemofilia A/sangue , Hemofilia A/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Plasmídeos/genética , Estrutura Terciária de Proteína
12.
Nat Commun ; 14(1): 7668, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996457

RESUMO

Uncovering the mechanisms regulating hematopoietic specification not only would overcome current limitations related to hematopoietic stem and progenitor cell (HSPC) transplantation, but also advance cellular immunotherapies. However, generating functional human induced pluripotent stem cell (hiPSC)-derived HSPCs and their derivatives has been elusive, necessitating a better understanding of the developmental mechanisms that trigger HSPC specification. Here, we reveal that early activation of the Nod1-Ripk2-NF-kB inflammatory pathway in endothelial cells (ECs) primes them to switch fate towards definitive hemogenic endothelium, a pre-requisite to specify HSPCs. Our genetic and chemical embryonic models show that HSPCs fail to specify in the absence of Nod1 and its downstream kinase Ripk2 due to a failure on hemogenic endothelial (HE) programming, and that small Rho GTPases coordinate the activation of this pathway. Manipulation of NOD1 in a human system of definitive hematopoietic differentiation indicates functional conservation. This work establishes the RAC1-NOD1-RIPK2-NF-kB axis as a critical intrinsic inductor that primes ECs prior to HE fate switch and HSPC specification. Manipulation of this pathway could help derive a competent HE amenable to specify functional patient specific HSPCs and their derivatives for the treatment of blood disorders.


Assuntos
Hemangioblastos , Células-Tronco Pluripotentes Induzidas , Proteínas Monoméricas de Ligação ao GTP , Humanos , Diferenciação Celular , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , NF-kappa B/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
13.
Science ; 381(6656): 436-443, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37499029

RESUMO

Hematopoietic stem cells (HSCs) are the source of all blood cells over an individual's lifetime. Diseased HSCs can be replaced with gene-engineered or healthy HSCs through HSC transplantation (HSCT). However, current protocols carry major side effects and have limited access. We developed CD117/LNP-messenger RNA (mRNA), a lipid nanoparticle (LNP) that encapsulates mRNA and is targeted to the stem cell factor receptor (CD117) on HSCs. Delivery of the anti-human CD117/LNP-based editing system yielded near-complete correction of hematopoietic sickle cells. Furthermore, in vivo delivery of pro-apoptotic PUMA (p53 up-regulated modulator of apoptosis) mRNA with CD117/LNP affected HSC function and permitted nongenotoxic conditioning for HSCT. The ability to target HSCs in vivo offers a nongenotoxic conditioning regimen for HSCT, and this platform could be the basis of in vivo genome editing to cure genetic disorders, which would abrogate the need for HSCT.


Assuntos
Edição de Genes , Células-Tronco Hematopoéticas , Proteínas Proto-Oncogênicas c-kit , RNA Mensageiro , Edição de Genes/métodos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , RNA Mensageiro/genética , Animais , Humanos , Camundongos
14.
bioRxiv ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37693628

RESUMO

Tropomyosins coat actin filaments and impact actin-related signaling and cell morphogenesis. Genome-wide association studies have linked Tropomyosin 1 (TPM1) with human blood trait variation. Prior work suggested that TPM1 regulated blood cell formation in vitro, but it was unclear how or when TPM1 affected hematopoiesis. Using gene-edited induced pluripotent stem cell (iPSC) model systems, TPM1 knockout was found to augment developmental cell state transitions, as well as TNFα and GTPase signaling pathways, to promote hemogenic endothelial (HE) cell specification and hematopoietic progenitor cell (HPC) production. Single-cell analyses showed decreased TPM1 expression during human HE specification, suggesting that TPM1 regulated in vivo hematopoiesis via similar mechanisms. Indeed, analyses of a TPM1 gene trap mouse model showed that TPM1 deficiency enhanced the formation of HE during embryogenesis. These findings illuminate novel effects of TPM1 on developmental hematopoiesis.

15.
Methods Mol Biol ; 2520: 321-333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35579838

RESUMO

The ability to engineer specific mutations in human embryonic stem cells (ECSs) or induced pluripotent stem cells (iPSCs) is extremely important in the modeling of human diseases and the study of biological processes. While CRISPR/Cas9 can robustly generate gene knockouts (KOs) and gene loci modifications in coding sequences of iPSCs, it remains difficult to produce monoallelic mutations or modify specific nucleotides in noncoding sequences due to technical constraints.Here, we describe how to leverage cytosine (BE4max) and adenine (ABEmax) base editors to introduce precise mutations in iPSCs without inducing DNA double-stranded breaks. This chapter illustrates how to design and clone gRNAs, evaluate editing efficiency, and detect genomic edits at specific sites in iPSCs through the utilization of base editing technology.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes Induzidas , Adenina , Sistemas CRISPR-Cas/genética , Citosina , Genoma Humano , Humanos
16.
Front Genome Ed ; 3: 682171, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34714297

RESUMO

[This corrects the article DOI: 10.3389/fgeed.2020.609650.].

17.
Stem Cell Reports ; 16(6): 1458-1467, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34019812

RESUMO

Inherited thrombocytopenia results in low platelet counts and increased bleeding. Subsets of these patients have monoallelic germline mutations in ETV6 or RUNX1 and a heightened risk of developing hematologic malignancies. Utilizing CRISPR-Cas9, we compared the in vitro phenotype of hematopoietic progenitor cells and megakaryocytes derived from induced pluripotent stem cell (iPSC) lines harboring mutations in either ETV6 or RUNX1. Both mutant lines display phenotypes consistent with a platelet-bleeding disorder. Surprisingly, these cellular phenotypes were largely distinct. The ETV6-mutant iPSCs yield more hematopoietic progenitor cells and megakaryocytes, but the megakaryocytes are immature and less responsive to agonist stimulation. On the contrary, RUNX1-mutant iPSCs yield fewer hematopoietic progenitor cells and megakaryocytes, but the megakaryocytes are more responsive to agonist stimulation. However, both mutant iPSC lines display defects in proplatelet formation. Our work highlights that, while patients harboring germline ETV6 or RUNX1 mutations have similar clinical phenotypes, the molecular mechanisms may be distinct.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Hematopoese , Células-Tronco Pluripotentes Induzidas/metabolismo , Megacariócitos/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Trombocitopenia/genética , Trombocitopenia/metabolismo , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Predisposição Genética para Doença , Humanos , Modelos Biológicos , Mutação , Fenótipo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/metabolismo , Variante 6 da Proteína do Fator de Translocação ETS
18.
Blood Adv ; 5(5): 1137-1153, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33635334

RESUMO

ß-thalassemias (ß-thal) are a group of blood disorders caused by mutations in the ß-globin gene (HBB) cluster. ß-globin associates with α-globin to form adult hemoglobin (HbA, α2ß2), the main oxygen-carrier in erythrocytes. When ß-globin chains are absent or limiting, free α-globins precipitate and damage cell membranes, causing hemolysis and ineffective erythropoiesis. Clinical data show that severity of ß-thal correlates with the number of inherited α-globin genes (HBA1 and HBA2), with α-globin gene deletions having a beneficial effect for patients. Here, we describe a novel strategy to treat ß-thal based on genome editing of the α-globin locus in human hematopoietic stem/progenitor cells (HSPCs). Using CRISPR/Cas9, we combined 2 therapeutic approaches: (1) α-globin downregulation, by deleting the HBA2 gene to recreate an α-thalassemia trait, and (2) ß-globin expression, by targeted integration of a ß-globin transgene downstream the HBA2 promoter. First, we optimized the CRISPR/Cas9 strategy and corrected the pathological phenotype in a cellular model of ß-thalassemia (human erythroid progenitor cell [HUDEP-2] ß0). Then, we edited healthy donor HSPCs and demonstrated that they maintained long-term repopulation capacity and multipotency in xenotransplanted mice. To assess the clinical potential of this approach, we next edited ß-thal HSPCs and achieved correction of α/ß globin imbalance in HSPC-derived erythroblasts. As a safer option for clinical translation, we performed editing in HSPCs using Cas9 nickase showing precise editing with no InDels. Overall, we described an innovative CRISPR/Cas9 approach to improve α/ß globin imbalance in thalassemic HSPCs, paving the way for novel therapeutic strategies for ß-thal.


Assuntos
Talassemia beta , Animais , Sistemas CRISPR-Cas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , alfa-Globinas/genética , Globinas beta/genética , Talassemia beta/genética , Talassemia beta/terapia
19.
Front Genome Ed ; 2: 609650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34713234

RESUMO

Genome-editing technologies have the potential to correct most genetic defects involved in blood disorders. In contrast to mutation-specific editing, targeted gene insertion can correct most of the mutations affecting the same gene with a single therapeutic strategy (gene replacement) or provide novel functions to edited cells (gene addition). Targeting a selected genomic harbor can reduce insertional mutagenesis risk, while enabling the exploitation of endogenous promoters, or selected chromatin contexts, to achieve specific transgene expression levels/patterns and the modulation of disease-modifier genes. In this review, we will discuss targeted gene insertion and the advantages and limitations of different genomic harbors currently under investigation for various gene therapy applications.

20.
Nat Commun ; 11(1): 3778, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728076

RESUMO

Targeted genome editing has a great therapeutic potential to treat disorders that require protein replacement therapy. To develop a platform independent of specific patient mutations, therapeutic transgenes can be inserted in a safe and highly transcribed locus to maximize protein expression. Here, we describe an ex vivo editing approach to achieve efficient gene targeting in human hematopoietic stem/progenitor cells (HSPCs) and robust expression of clinically relevant proteins by the erythroid lineage. Using CRISPR-Cas9, we integrate different transgenes under the transcriptional control of the endogenous α-globin promoter, recapitulating its high and erythroid-specific expression. Erythroblasts derived from targeted HSPCs secrete different therapeutic proteins, which retain enzymatic activity and cross-correct patients' cells. Moreover, modified HSPCs maintain long-term repopulation and multilineage differentiation potential in transplanted mice. Overall, we establish a safe and versatile CRISPR-Cas9-based HSPC platform for different therapeutic applications, including hemophilia and inherited metabolic disorders.


Assuntos
Engenharia Celular/métodos , Edição de Genes , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Hemofilia A/terapia , Humanos , Doenças Metabólicas/terapia , Camundongos , Regiões Promotoras Genéticas/genética , Transplante Autólogo/métodos , Transplante Heterólogo , alfa-Globinas/genética , alfa-Globinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA