Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
J Exp Bot ; 75(1): 334-349, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37708289

RESUMO

The carnivorous plants in the order Caryophyllales co-opted jasmonate signalling from plant defence to botanical carnivory. However, carnivorous plants have at least 11 independent origins, and here we ask whether jasmonate signalling has been co-opted repeatedly in different evolutionary lineages. We experimentally wounded and fed the carnivorous plants Sarracenia purpurea (order Ericales), Cephalotus follicularis (order Oxalidales), Drosophyllum lusitanicum (order Caryophyllales), and measured electrical signals, phytohormone tissue level, and digestive enzymes activity. Coronatine was added exogenously to confirm the role of jasmonates in the induction of digestive process. Immunodetection of aspartic protease and proteomic analysis of digestive fluid was also performed. We found that prey capture induced accumulation of endogenous jasmonates only in D. lusitanicum, in accordance with increased enzyme activity after insect prey or coronatine application. In C. follicularis, the enzyme activity was constitutive while in S. purpurea was regulated by multiple factors. Several classes of digestive enzymes were identified in the digestive fluid of D. lusitanicum. Although carnivorous plants from different evolutionary lineages use the same digestive enzymes, the mechanism of their regulation differs. All investigated genera use jasmonates for their ancient role, defence, but jasmonate signalling has been co-opted for botanical carnivory only in some of them.


Assuntos
Planta Carnívora , Carnivoridade , Proteômica
2.
Ann Bot ; 129(3): 357-365, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-34922341

RESUMO

BACKGROUND AND AIMS: The carnivorous pitcher plants of the genus Nepenthes have evolved modified leaves that act as pitcher traps. The traps are specialized for prey attraction, capture, digestion and nutrient uptake but not for photosynthetic assimilation. METHODS: In this study, we used antibodies against different photosynthetic (D1, Lhcb2, Lhcb4, RbcL) and respiratory-related (AOX, COXII) proteins for semi-quantification of these proteins in the assimilation part of the leaves and the pitcher traps of different Nepenthes species and hybrids. Different functional zones of the trap and the traps from different ontogenetic stages were investigated. The pitcher traps of the distantly related species Sarracenia purpurea ssp. venosa were used as an outgroup. In addition, chlorophyll fluorescence and infrared gas analysis were used for measurements of the net rate of photosynthesis (AN) and respiration in the dark (RD). KEY RESULTS: The pitcher traps contained the same or lower abundance of photosynthesis-related proteins in accordance with their low AN in comparison to the assimilation part of the leaves. Surprisingly, all traps contained a high amount of alternative oxidase (AOX) and low amount of cytochrome c oxidase subunit II (COX II) than in the assimilation part of the leaves. Thermal imaging did not confirm the role of AOX in pitcher thermogenesis. CONCLUSIONS: The pitcher traps contain a high amount of AOX enzyme. The possible role of AOX in specialized pitcher tissue is discussed based on knowledge of the role and function of AOX in non-carnivorous plants. The roles of AOX in prey attraction, balance between light and dark reactions of photosynthesis, homeostasis of reactive oxygen species, digestive physiology and nutrient assimilation are discussed.


Assuntos
Planta Carnívora , Sarraceniaceae , Proteínas Mitocondriais , Compostos Orgânicos , Oxirredutases , Proteínas de Plantas/metabolismo , Sarraceniaceae/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163669

RESUMO

Arabidopsis thaliana SYNAPTOTAGMIN 1 (AtSYT1) was shown to be involved in responses to different environmental and biotic stresses. We investigated gas exchange and chlorophyll a fluorescence in Arabidopsis wild-type (WT, ecotype Col-0) and atsyt1 mutant plants irrigated for 48 h with 150 mM NaCl. We found that salt stress significantly decreases net photosynthetic assimilation, effective photochemical quantum yield of photosystem II (ΦPSII), stomatal conductance and transpiration rate in both genotypes. Salt stress has a more severe impact on atsyt1 plants with increasing effect at higher illumination. Dark respiration, photochemical quenching (qP), non-photochemical quenching and ΦPSII measured at 750 µmol m-2 s-1 photosynthetic photon flux density were significantly affected by salt in both genotypes. However, differences between mutant and WT plants were recorded only for qP and ΦPSII. Decreased photosynthetic efficiency in atsyt1 under salt stress was accompanied by reduced chlorophyll and carotenoid and increased flavonol content in atsyt1 leaves. No differences in the abundance of key proteins participating in photosynthesis (except PsaC and PsbQ) and chlorophyll biosynthesis were found regardless of genotype or salt treatment. Microscopic analysis showed that irrigating plants with salt caused a partial closure of the stomata, and this effect was more pronounced in the mutant than in WT plants. The localization pattern of AtSYT1 was also altered by salt stress.


Assuntos
Arabidopsis/fisiologia , Fotossíntese/fisiologia , Estresse Salino/fisiologia , Sinaptotagmina I/deficiência , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Clorofila A/metabolismo , Fluorescência , Gases/metabolismo , Luz , Fotossíntese/efeitos da radiação , Pigmentos Biológicos/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Estresse Salino/efeitos da radiação , Sinaptotagmina I/metabolismo
4.
Ann Bot ; 128(3): 241-259, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34111238

RESUMO

BACKGROUND: Carnivorous plants are an ecological group of approx. 810 vascular species which capture and digest animal prey, absorb prey-derived nutrients and utilize them to enhance their growth and development. Extant carnivorous plants have evolved in at least ten independent lineages, and their adaptive traits represent an example of structural and functional convergence. Plant carnivory is a result of complex adaptations to mostly nutrient-poor, wet and sunny habitats when the benefits of carnivory exceed the costs. With a boost in interest and extensive research in recent years, many aspects of these adaptations have been clarified (at least partly), but many remain unknown. SCOPE: We provide some of the most recent insights into substantial ecophysiological, biochemical and evolutional particulars of plant carnivory from the functional viewpoint. We focus on those processes and traits in carnivorous plants associated with their ecological characterization, mineral nutrition, cost-benefit relationships, functioning of digestive enzymes and regulation of the hunting cycle in traps. We elucidate mechanisms by which uptake of prey-derived nutrients leads to stimulation of photosynthesis and root nutrient uptake. CONCLUSIONS: Utilization of prey-derived mineral (mainly N and P) and organic nutrients is highly beneficial for plants and increases the photosynthetic rate in leaves as a prerequisite for faster plant growth. Whole-genome and tandem gene duplications brought gene material for diversification into carnivorous functions and enabled recruitment of defence-related genes. Possible mechanisms for the evolution of digestive enzymes are summarized, and a comprehensive picture on the biochemistry and regulation of prey decomposition and prey-derived nutrient uptake is provided.


Assuntos
Carnivoridade , Plantas , Animais , Nutrientes , Fotossíntese , Folhas de Planta , Plantas/genética
5.
J Exp Bot ; 71(12): 3749-3758, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32219314

RESUMO

Carnivorous plants within the order Caryophyllales use jasmonates, a class of phytohormone, in the regulation of digestive enzyme activities. We used the carnivorous butterwort Pinguicula × Tina from the order Lamiales to investigate whether jasmonate signaling is a universal and ubiquitous signaling pathway that exists outside the order Caryophyllales. We measured the electrical signals, enzyme activities, and phytohormone tissue levels in response to prey capture. Mass spectrometry was used to identify proteins in the digestive secretion. We identified eight enzymes in the digestive secretion, many of which were previously found in other genera of carnivorous plants. Among them, alpha-amylase is unique in carnivorous plants. Enzymatic activities increased in response to prey capture; however, the tissue content of jasmonic acid and its isoleucine conjugate remained rather low in contrast to the jasmonate response to wounding. Enzyme activities did not increase in response to the exogenous application of jasmonic acid or coronatine. Whereas similar digestive enzymes were co-opted from plant defense mechanisms among carnivorous plants, the mode of their regulation differs. The butterwort has not co-opted jasmonate signaling for the induction of enzyme activities in response to prey capture. Moreover, the presence of alpha-amylase in digestive fluid of P. × Tina, which has not been found in other genera of carnivorous plants, might indicate that non-defense-related genes have also been co-opted for carnivory.


Assuntos
Carnivoridade , Lamiales , Ciclopentanos , Oxilipinas
6.
Ann Bot ; 126(1): 25-37, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32173732

RESUMO

BACKGROUND AND AIMS: Carnivorous plants can enhance photosynthetic efficiency in response to prey nutrient uptake, but the underlying mechanisms of increased photosynthesis are largely unknown. Here we investigated photosynthesis in the pitcher plant Nepenthes × ventrata in response to different prey-derived and root mineral nutrition to reveal photosynthetic constrains. METHODS: Nutrient-stressed plants were irrigated with full inorganic solution or fed with four different insects: wasps, ants, beetles or flies. Full dissection of photosynthetic traits was achieved by means of gas exchange, chlorophyll fluorescence and immunodetection of photosynthesis-related proteins. Leaf biochemical and anatomical parameters together with mineral composition, nitrogen and carbon isotopic discrimination of leaves and insects were also analysed. KEY RESULTS: Mesophyll diffusion was the major photosynthetic limitation for nutrient-stressed Nepenthes × ventrata, while biochemistry was the major photosynthetic limitation after nutrient application. The better nutrient status of insect-fed and root-fertilized treatments increased chlorophyll, pigment-protein complexes and Rubisco content. As a result, both photochemical and carboxylation potential were enhanced, increasing carbon assimilation. Different nutrient application affected growth, and root-fertilized treatment led to the investment of more biomass in leaves instead of pitchers. CONCLUSIONS: The study resolved a 35-year-old hypothesis that carnivorous plants increase photosynthetic assimilation via the investment of prey-derived nitrogen in the photosynthetic apparatus. The equilibrium between biochemical and mesophyll limitations of photosynthesis is strongly affected by the nutrient treatment.


Assuntos
Carnivoridade , Fotossíntese , Animais , Dióxido de Carbono , Clorofila , Nutrientes , Compostos Orgânicos , Folhas de Planta
7.
Ann Bot ; 125(1): 173-183, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31677265

RESUMO

BACKGROUND AND AIMS: General anaesthetics are compounds that induce loss of responsiveness to environmental stimuli in animals and humans. The primary site of action of general anaesthetics is the nervous system, where anaesthetics inhibit neuronal transmission. Although plants do not have neurons, they generate electrical signals in response to biotic and abiotic stresses. Here, we investigated the effect of the general volatile anaesthetic diethyl ether on the ability to sense potential prey or herbivore attacks in the carnivorous plant Venus flytrap (Dionaea muscipula). METHODS: We monitored trap movement, electrical signalling, phytohormone accumulation and gene expression in response to the mechanical stimulation of trigger hairs and wounding under diethyl ether treatment. KEY RESULTS: Diethyl ether completely inhibited the generation of action potentials and trap closing reactions, which were easily and rapidly restored when the anaesthetic was removed. Diethyl ether also inhibited the later response: jasmonic acid (JA) accumulation and expression of JA-responsive genes (cysteine protease dionain and type I chitinase). However, external application of JA bypassed the inhibited action potentials and restored gene expression under diethyl ether anaesthesia, indicating that downstream reactions from JA are not inhibited. CONCLUSIONS: The Venus flytrap cannot sense prey or a herbivore attack under diethyl ether treatment caused by inhibited action potentials, and the JA signalling pathway as a consequence.


Assuntos
Anestesia , Droseraceae , Animais , Ciclopentanos , Éter , Oxilipinas
8.
J Exp Bot ; 70(13): 3379-3389, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31120525

RESUMO

The lipid-derived jasmonate phytohormones (JAs) regulate a wide spectrum of physiological processes in plants such as growth, development, tolerance to abiotic stresses, and defence against pathogen infection and insect attack. Recently, a new role for JAs has been revealed in carnivorous plants. In these specialized plants, JAs can induce the formation of digestive cavities and regulate enzyme production in response to different stimuli from caught prey. Appearing to be a new function for JAs in plants, a closer look reveals that the signalling pathways involved resemble known signalling pathways from plant defence mechanisms. Moreover, the digestion-related secretome of carnivorous plants is composed of many pathogenesis-related (PR) proteins and low molecular weight compounds, indicating that the plant carnivory syndrome is related to and has evolved from plant defence mechanisms. This review describes the similarities between defence and carnivory. It further describes how, after recognition of caught insects, JAs enable the carnivorous plants to digest and benefit from the prey. In addition, a causal connection between electrical and jasmonate signalling is discussed.


Assuntos
Ciclopentanos/metabolismo , Drosera/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sarraceniaceae/metabolismo , Ciclopentanos/imunologia , Oxilipinas/imunologia , Imunidade Vegetal , Metabolismo Secundário , Transdução de Sinais , Viridiplantae/metabolismo
9.
Planta ; 248(2): 451-464, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29767335

RESUMO

MAIN CONCLUSION: Nepenthes regulates enzyme activities by sensing stimuli from the insect prey. Protein is the best inductor mimicking the presence of an insect prey. Carnivorous plants of the genus Nepenthes have evolved passive pitcher traps for prey capture. In this study, we investigated the ability of chemical signals from a prey (chitin, protein, and ammonium) to induce transcription and synthesis of digestive enzymes in Nepenthes × Mixta. We used real-time PCR and specific antibodies generated against the aspartic proteases nepenthesins, and type III and type IV chitinases to investigate the induction of digestive enzyme synthesis in response to different chemical stimuli from the prey. Transcription of nepenthesins was strongly induced by ammonium, protein and live prey; chitin induced transcription only very slightly. This is in accordance with the amount of released enzyme and proteolytic activity in the digestive fluid. Although transcription of type III chitinase was induced by all investigated stimuli, a significant accumulation of the enzyme in the digestive fluid was found mainly after protein and live prey addition. Protein and live prey were also the best inducers for accumulation of type IV chitinase in the digestive fluid. Although ammonium strongly induced transcription of all investigated genes probably through membrane depolarization, strong acidification of the digestive fluid affected stability and abundance of both chitinases in the digestive fluid. The study showed that the proteins are universal inductors of enzyme activities in carnivorous pitcher plants best mimicking the presence of insect prey. This is not surprising, because proteins are a much valuable source of nitrogen, superior to chitin. Extensive vesicular activity was observed in prey-activated glands.


Assuntos
Caryophyllales/enzimologia , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Cloreto de Amônio/farmacologia , Carnivoridade , Caryophyllales/fisiologia , Caryophyllales/ultraestrutura , Quitina/metabolismo , Enzimas/genética , Concentração de Íons de Hidrogênio , Potenciais da Membrana , Proteínas de Plantas/genética , Soroalbumina Bovina/metabolismo
10.
Biochim Biophys Acta ; 1857(6): 799-809, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26901522

RESUMO

Gymnosperms, unlike angiosperms, are able to synthesize chlorophyll and form photosystems in complete darkness. Photosystem I (PSI) formed under such conditions is fully active, but photosystem II (PSII) is present in its latent form with inactive oxygen evolving complex (OEC). In this work we have studied light-induced gradual changes in PSII function in dark-grown cotyledons of Norway spruce (Picea abies) via the measurement of chlorophyll a fluorescence rise, absorption changes at 830 nm, thermoluminescence glow curves (TL) and protein analysis. The results indicate that in dark-grown cotyledons, alternative reductants were able to act as electron donors to PSII with inactive OEC. Illumination of cotyledons for 5 min led to partial activation of PSII, which was accompanied by detectable oxygen evolution, but still a substantial number of PSII centers remained in the so called PSII-Q(B)-non-reducing form. Interestingly, even 24 h long illumination was not sufficient for the full activation of PSII centers. This was evidenced by a weak attachment of PsbP protein and the absence of PsbQ protein in PSII particles, the absence of PSII supercomplexes, the suboptimal maximum yield of PSII photochemistry, the presence of C band in TL curve and also the presence of up-shifted Q band in TL in DCMU-treated cotyledons. This slow light-induced activation of PSII in dark-grown cotyledons could contribute to the prevention of PSII overexcitation before the light-induced increase in PSI/PSII ratio allows effective operation of linear electron flow.


Assuntos
Escuridão , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Picea/efeitos da radiação , Proteínas de Plantas/metabolismo , Plântula/efeitos da radiação , Western Blotting , Clorofila/química , Clorofila/metabolismo , Clorofila A , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Cotilédone/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Medições Luminescentes/métodos , Oxigênio/metabolismo , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Picea/crescimento & desenvolvimento , Picea/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Temperatura , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
11.
New Phytol ; 216(3): 927-938, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28850713

RESUMO

In the carnivorous plant Venus flytrap (Dionaea muscipula), the sequence of events after prey capture resembles the well-known plant defence signalling pathway in response to pathogen or herbivore attack. Here, we used wounding to mimic prey capture to show the similarities and differences between botanical carnivory and plant defence mechanisms. We monitored movement, electrical signalling, jasmonate accumulation and digestive enzyme secretion in local and distal (systemic) traps in response to prey capture, the mechanical stimulation of trigger hairs and wounding. The Venus flytrap cannot discriminate between wounding and mechanical trigger hair stimulation. Both induced the same action potentials, rapid trap closure, hermetic trap sealing, the accumulation of jasmonic acid (JA) and its isoleucine conjugate (JA-Ile), and the secretion of proteases (aspartic and cysteine proteases), phosphatases and type I chitinase. The jasmonate accumulation and enzyme secretion were confined to the local traps, to which the stimulus was applied, which correlates with the propagation of electrical signals and the absence of a systemic response in the Venus flytrap. In contrast to plant defence mechanisms, the absence of a systemic response in carnivorous plant may represent a resource-saving strategy. During prey capture, it could be quite expensive to produce digestive enzymes in the traps on the plant without prey.


Assuntos
Ciclopentanos/metabolismo , Droseraceae/fisiologia , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Animais , Quitinases/metabolismo , Enzimas/metabolismo , Insetos , Transdução de Sinais
12.
New Phytol ; 213(4): 1818-1835, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27933609

RESUMO

The carnivorous sundew plant (Drosera capensis) captures prey using sticky tentacles. We investigated the tentacle and trap reactions in response to the electrical and jasmonate signalling evoked by different stimuli to reveal how carnivorous sundews recognize digestible captured prey in their traps. We measured the electrical signals, phytohormone concentration, enzyme activities and Chla fluorescence in response to mechanical stimulation, wounding or insect feeding in local and systemic traps. Seven new proteins in the digestive fluid were identified using mass spectrometry. Mechanical stimuli and live prey induced a fast, localized tentacle-bending reaction and enzyme secretion at the place of application. By contrast, repeated wounding induced a nonlocalized convulsive tentacle movement and enzyme secretion in local but also in distant systemic traps. These differences can be explained in terms of the electrical signal propagation and jasmonate accumulation, which also had a significant impact on the photosynthesis in the traps. The electrical signals generated in response to wounding could partially mimic a mechanical stimulation of struggling prey and might trigger a false alarm, confirming that the botanical carnivory and plant defence mechanisms are related. To trigger the full enzyme activity, the traps must detect chemical stimuli from the captured prey.


Assuntos
Ciclopentanos/metabolismo , Drosera/fisiologia , Fenômenos Eletrofisiológicos , Oxilipinas/metabolismo , Transdução de Sinais , Drosera/enzimologia , Modelos Biológicos , Processos Fotoquímicos , Complexo de Proteína do Fotossistema II/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo
13.
New Phytol ; 214(3): 967-972, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28304077

RESUMO

Photo-reduction of O2 to water mediated by flavodiiron proteins (FDPs) represents a safety valve for the photosynthetic electron transport chain in fluctuating light. So far, the FDP-mediated O2 photo-reduction has been evidenced only in cyanobacteria and the moss Physcomitrella; however, a recent phylogenetic analysis of transcriptomes of photosynthetic organisms has also revealed the presence of FDP genes in several nonflowering plant groups. What remains to be clarified is whether the FDP-dependent O2 photo-reduction is actually operational in these organisms. We have established a simple method for the monitoring of FDP-mediated O2 photo-reduction, based on the measurement of redox kinetics of P700 (the electron donor of photosystem I) upon dark-to-light transition. The O2 photo-reduction is manifested as a fast re-oxidation of P700. The validity of the method was verified by experiments with transgenic organisms, namely FDP knock-out mutants of Synechocystis and Physcomitrella and transgenic Arabidopsis plants expressing FDPs from Physcomitrella. We observed the fast P700 re-oxidation in representatives of all green plant groups excluding angiosperms. Our results provide strong evidence that the FDP-mediated O2 photo-reduction is functional in all nonflowering green plant groups. This finding suggests a major change in the strategy of photosynthetic regulation during the evolution of angiosperms.


Assuntos
Cianobactérias/metabolismo , Cycadopsida/metabolismo , Flavoproteínas/metabolismo , Cianobactérias/efeitos da radiação , Cycadopsida/efeitos da radiação , Transporte de Elétrons , Cinética , Luz , Oxirredução , Fotossíntese/efeitos da radiação , Filogenia
14.
Photosynth Res ; 132(2): 165-179, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28229362

RESUMO

Unlike angiosperms, gymnosperms use two different enzymes for the reduction of protochlorophyllide to chlorophyllide: the light-dependent protochlorophyllide oxidoreductase (LPOR) and the dark-operative protochlorophyllide oxidoreductase (DPOR). In this study, we examined the specific role of both enzymes for chlorophyll synthesis in response to different light/dark and temperature conditions at different developmental stages (cotyledons and needles) of Norway spruce (Picea abies Karst.). The accumulation of chlorophyll and chlorophyll-binding proteins strongly decreased during dark growth in secondary needles at room temperature as well as in cotyledons at low temperature (7 °C) indicating suppression of DPOR activity. The levels of the three DPOR subunits ChlL, ChlN, and ChlB and the transcripts of their encoding genes were diminished in dark-grown secondary needles. The low temperature had minor effects on the transcription and translation of these genes in cotyledons, which is suggestive for post-translational control in chlorophyll biosynthesis. Taking into account the higher solubility of oxygen at low temperature and oxygen sensitivity of DPOR, we mimicked low-temperature condition by the exposure of seedlings to higher oxygen content (33%). The treatment resulted in an etiolated phenotype of dark-grown seedlings, confirming an oxygen-dependent control of DPOR activity in spruce cotyledons. Moreover, light-dependent suppression of mRNA and protein level of DPOR subunits indicates that more efficiently operating LPOR takes over the DPOR function under light conditions, especially in secondary needles.


Assuntos
Clorofila/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/biossíntese , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Picea/enzimologia , Picea/metabolismo , Clorofila/genética , Regulação da Expressão Gênica de Plantas , Luz , Noruega , Picea/genética , Temperatura
16.
Sensors (Basel) ; 16(4)2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-27070612

RESUMO

The paper describes the electrical plant response to mechanical stimulation monitored with the help of conducting polymers deposited on cotton fabric. Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers in aqueous medium. Thus, modified fabrics were again coated with polypyrrole or polyaniline, respectively, in order to investigate any synergetic effect between both polymers with respect to conductivity and its stability during repeated dry cleaning. The coating was confirmed by infrared spectroscopy. The resulting fabrics have been used as electrodes to collect the electrical response to the stimulation of a Venus flytrap plant. This is a paradigm of the use of conducting polymers in monitoring of plant neurobiology.

17.
Ann Bot ; 115(7): 1075-92, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25948113

RESUMO

BACKGROUND: The cost-benefit model for the evolution of botanical carnivory provides a conceptual framework for interpreting a wide range of comparative and experimental studies on carnivorous plants. This model assumes that the modified leaves called traps represent a significant cost for the plant, and this cost is outweighed by the benefits from increased nutrient uptake from prey, in terms of enhancing the rate of photosynthesis per unit leaf mass or area (AN) in the microsites inhabited by carnivorous plants. SCOPE: This review summarizes results from the classical interpretation of the cost-benefit model for evolution of botanical carnivory and highlights the costs and benefits of active trapping mechanisms, including water pumping, electrical signalling and accumulation of jasmonates. Novel alternative sequestration strategies (utilization of leaf litter and faeces) in carnivorous plants are also discussed in the context of the cost-benefit model. CONCLUSIONS: Traps of carnivorous plants have lower AN than leaves, and the leaves have higher AN after feeding. Prey digestion, water pumping and electrical signalling represent a significant carbon cost (as an increased rate of respiration, RD) for carnivorous plants. On the other hand, jasmonate accumulation during the digestive period and reprogramming of gene expression from growth and photosynthesis to prey digestion optimizes enzyme production in comparison with constitutive secretion. This inducibility may have evolved as a cost-saving strategy beneficial for carnivorous plants. The similarities between plant defence mechanisms and botanical carnivory are highlighted.


Assuntos
Evolução Biológica , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Droseraceae/fisiologia , Transdução de Sinais
18.
Ecotoxicol Environ Saf ; 120: 66-73, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26036417

RESUMO

Silicon was shown to alleviate the negative effects of various biotic and abiotic stresses on plant growth. Although the positive role of Si on toxic and heavy metal Cd has been already described, the mechanisms have been explained only partially and still remain unclear. In the present study we investigated the effect of Si on photosynthetic-related processes in maize exposed to two different levels of Cd via measurements of net photosynthetic rate (AN), chlorophyll a fluorescence and pigment analysis, as well as studies of leaf tissue anatomy and cell ultrastructure using bright-field and transmission electron microscopy. We found that Si actively alleviated the toxic syndromes of Cd by increasing AN, effective photochemical quantum yield of photosystem II (ϕPSII) and content of assimilation pigments, although did not decrease the concentration of Cd in leaf tissues. Cadmium did not affect the leaf anatomy and ultrastructure of leaf mesophyll's cell chloroplasts; however, Cd negatively affected thylakoid formation in chloroplasts of bundle sheath cells, and this was alleviated by Si. Improved thylakoid formation in bundle sheath's cell chloroplasts may contribute to Si-induced enhancement of photosynthesis and related increase in biomass production in C4 plant maize.


Assuntos
Cádmio/toxicidade , Cloroplastos/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Silício/farmacologia , Zea mays/efeitos dos fármacos , Clorofila/análogos & derivados , Clorofila/metabolismo , Clorofila A , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Zea mays/metabolismo , Zea mays/ultraestrutura
19.
Ann Bot ; 113(1): 69-78, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24201141

RESUMO

UNLABELLED: BACKROUND AND AIMS: It has been suggested that the rate of net photosynthesis (AN) of carnivorous plants increases in response to prey capture and nutrient uptake; however, data confirming the benefit from carnivory in terms of increased AN are scarce and unclear. The principal aim of our study was to investigate the photosynthetic benefit from prey capture in the carnivorous sundew Drosera capensis. METHODS: Prey attraction experiments were performed, with measurements and visualization of enzyme activities, elemental analysis and pigment quantification together with simultaneous measurements of gas exchange and chlorophyll a fluorescence in D. capensis in response to feeding with fruit flies (Drosophila melanogaster). KEY RESULTS: Red coloration of tentacles did not act as a signal to attract fruit flies onto the traps. Phosphatase, phophodiesterase and protease activities were induced 24 h after prey capture. These activities are consistent with the depletion of phosphorus and nitrogen from digested prey and a significant increase in their content in leaf tissue after 10 weeks. Mechanical stimulation of tentacle glands alone was not sufficient to induce proteolytic activity. Activities of ß-D-glucosidases and N-acetyl-ß-D-glucosaminidases in the tentacle mucilage were not detected. The uptake of phosphorus from prey was more efficient than that of nitrogen and caused the foliar N:P ratio to decrease; the contents of other elements (K, Ca, Mg) decreased slightly in fed plants. Increased foliar N and P contents resulted in a significant increase in the aboveground plant biomass, the number of leaves and chlorophyll content as well as AN, maximum quantum yield (Fv/Fm) and effective photochemical quantum yield of photosystem II (ΦPSII). CONCLUSIONS: According to the stoichiometric relationships among different nutrients, the growth of unfed D. capensis plants was P-limited. This P-limitation was markedly alleviated by feeding on fruit flies and resulted in improved plant nutrient status and photosynthetic performance. This study supports the original cost/benefit model proposed by T. Givnish almost 30 years ago and underlines the importance of plant carnivory for increasing phosphorus, and thereby photosynthesis.


Assuntos
Carnivoridade , Drosera/fisiologia , Fotossíntese/fisiologia , Animais , Clorofila/análise , Clorofila A , Drosophila melanogaster , Enzimas/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/fisiologia
20.
Plants (Basel) ; 13(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38592882

RESUMO

The systemic electrical signal propagation in plants (i.e., from leaf to leaf) is dependent on GLUTAMATE RECEPTOR-LIKE proteins (GLRs). The GLR receptors are the homologous proteins to the animal ionotropic glutamate receptors (iGluRs) which are ligand-gated non-selective cation channels that mediate neurotransmission in the animal's nervous system. In this study, we investigated the effect of the general anaesthetic ketamine, a well-known non-competitive channel blocker of human iGluRs, on systemic electrical signal propagation in Arabidopsis thaliana. We monitored the electrical signal propagation, intracellular calcium level [Ca2+]cyt and expression of jasmonate (JA)-responsive genes in response to heat wounding. Although ketamine affected the shape and the parameters of the electrical signals (amplitude and half-time, t1/2) mainly in systemic leaves, it was not able to block a systemic response. Increased [Ca2+]cyt and the expression of jasmonate-responsive genes were detected in local as well as in systemic leaves in response to heat wounding in ketamine-treated plants. This is in contrast with the effect of the volatile general anaesthetic diethyl ether which completely blocked the systemic response. This low potency of ketamine in plants is probably caused by the fact that the critical amino acid residues needed for ketamine binding in human iGluRs are not conserved in plants' GLRs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA