RESUMO
The molecular chaperone HSP90 facilitates the folding of several client proteins, including innate immune receptors and protein kinases. HSP90 is an essential component of plant and animal immunity, yet pathogenic strategies that directly target the chaperone have not been described. Here, we identify the HopBF1 family of bacterial effectors as eukaryotic-specific HSP90 protein kinases. HopBF1 adopts a minimal protein kinase fold that is recognized by HSP90 as a host client. As a result, HopBF1 phosphorylates HSP90 to completely inhibit the chaperone's ATPase activity. We demonstrate that phosphorylation of HSP90 prevents activation of immune receptors that trigger the hypersensitive response in plants. Consequently, HopBF1-dependent phosphorylation of HSP90 is sufficient to induce severe disease symptoms in plants infected with the bacterial pathogen, Pseudomonas syringae. Collectively, our results uncover a family of bacterial effector kinases with toxin-like properties and reveal a previously unrecognized betrayal mechanism by which bacterial pathogens modulate host immunity.
Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mimetismo Molecular/imunologia , Imunidade Vegetal/fisiologia , Adenosina Trifosfatases/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/química , Células HEK293 , Proteínas de Choque Térmico HSP90/química , Células HeLa , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Fosforilação , Plasmídeos/genética , Ligação Proteica , Dobramento de Proteína , Proteínas Quinases/metabolismo , Pseudomonas syringae/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMO
Approximately 10% of human protein kinases are believed to be inactive and named pseudokinases because they lack residues required for catalysis. Here, we show that the highly conserved pseudokinase selenoprotein-O (SelO) transfers AMP from ATP to Ser, Thr, and Tyr residues on protein substrates (AMPylation), uncovering a previously unrecognized activity for a member of the protein kinase superfamily. The crystal structure of a SelO homolog reveals a protein kinase-like fold with ATP flipped in the active site, thus providing a structural basis for catalysis. SelO pseudokinases localize to the mitochondria and AMPylate proteins involved in redox homeostasis. Consequently, SelO activity is necessary for the proper cellular response to oxidative stress. Our results suggest that AMPylation may be a more widespread post-translational modification than previously appreciated and that pseudokinases should be analyzed for alternative transferase activities.
Assuntos
Monofosfato de Adenosina/metabolismo , Domínio Catalítico , Processamento de Proteína Pós-Traducional , Selenoproteínas/metabolismo , Sequência Conservada , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Selenoproteínas/químicaRESUMO
The kinase domain transfers phosphate from ATP to substrates. However, the Legionella effector SidJ adopts a kinase fold, yet catalyzes calmodulin (CaM)-dependent glutamylation to inactivate the SidE ubiquitin ligases. The structural and mechanistic basis in which the kinase domain catalyzes protein glutamylation is unknown. Here we present cryo-EM reconstructions of SidJ:CaM:SidE reaction intermediate complexes. We show that the kinase-like active site of SidJ adenylates an active-site Glu in SidE, resulting in the formation of a stable reaction intermediate complex. An insertion in the catalytic loop of the kinase domain positions the donor Glu near the acyl-adenylate for peptide bond formation. Our structural analysis led us to discover that the SidJ paralog SdjA is a glutamylase that differentially regulates the SidE ligases during Legionella infection. Our results uncover the structural and mechanistic basis in which the kinase fold catalyzes non-ribosomal amino acid ligations and reveal an unappreciated level of SidE-family regulation.
Assuntos
Proteínas de Bactérias/química , Dobramento de Proteína , Proteínas/química , Fatores de Virulência/química , Proteínas de Bactérias/metabolismo , Calmodulina/química , Catálise , Domínio Catalítico , Microscopia Crioeletrônica , Legionella/enzimologia , Mutagênese , Peptídeos/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Espectrometria de Fluorescência , Ubiquitina-Proteína Ligases/química , Fatores de Virulência/metabolismoRESUMO
The RNA genome of SARS-CoV-2 contains a 5' cap that facilitates the translation of viral proteins, protection from exonucleases and evasion of the host immune response1-4. How this cap is made in SARS-CoV-2 is not completely understood. Here we reconstitute the N7- and 2'-O-methylated SARS-CoV-2 RNA cap (7MeGpppA2'-O-Me) using virally encoded non-structural proteins (nsps). We show that the kinase-like nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain5 of nsp12 transfers the RNA to the amino terminus of nsp9, forming a covalent RNA-protein intermediate (a process termed RNAylation). Subsequently, the NiRAN domain transfers the RNA to GDP, forming the core cap structure GpppA-RNA. The nsp146 and nsp167 methyltransferases then add methyl groups to form functional cap structures. Structural analyses of the replication-transcription complex bound to nsp9 identified key interactions that mediate the capping reaction. Furthermore, we demonstrate in a reverse genetics system8 that the N terminus of nsp9 and the kinase-like active-site residues in the NiRAN domain are required for successful SARS-CoV-2 replication. Collectively, our results reveal an unconventional mechanism by which SARS-CoV-2 caps its RNA genome, thus exposing a new target in the development of antivirals to treat COVID-19.
Assuntos
Capuzes de RNA , RNA Viral , SARS-CoV-2 , Proteínas Virais , Antivirais , COVID-19/virologia , Domínio Catalítico , Guanosina Difosfato/metabolismo , Humanos , Metiltransferases/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Domínios Proteicos , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Tratamento Farmacológico da COVID-19RESUMO
ATP-grasp superfamily enzymes contain a hand-like ATP-binding fold and catalyze a variety of reactions using a similar catalytic mechanism. More than 30 protein families are categorized in this superfamily, and they are involved in a plethora of cellular processes and human diseases. Here, we identify C12orf29 (RLIG1) as an atypical ATP-grasp enzyme that ligates RNA. Human RLIG1 and its homologs autoadenylate on an active site Lys residue as part of a reaction intermediate that specifically ligates RNA halves containing a 5'-phosphate and a 3'-hydroxyl. RLIG1 binds tRNA in cells and can ligate tRNA within the anticodon loop in vitro. Transcriptomic analyses of Rlig1 knockout mice revealed significant alterations in global tRNA levels in the brains of female mice, but not in those of male mice. Furthermore, crystal structures of a RLIG1 homolog from Yasminevirus bound to nucleotides revealed a minimal and atypical RNA ligase fold with a conserved active site architecture that participates in catalysis. Collectively, our results identify RLIG1 as an RNA ligase and suggest its involvement in tRNA biology.
Assuntos
Domínio Catalítico , Camundongos Knockout , RNA Ligase (ATP) , RNA de Transferência , Animais , RNA de Transferência/metabolismo , RNA de Transferência/genética , Camundongos , RNA Ligase (ATP)/metabolismo , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/química , Humanos , Feminino , Masculino , Cristalografia por Raios X , Modelos MolecularesRESUMO
Serine hydroxymethyltransferase 2 (SHMT2) regulates one-carbon transfer reactions that are essential for amino acid and nucleotide metabolism, and uses pyridoxal-5'-phosphate (PLP) as a cofactor. Apo SHMT2 exists as a dimer with unknown functions, whereas PLP binding stabilizes the active tetrameric state. SHMT2 also promotes inflammatory cytokine signalling by interacting with the deubiquitylating BRCC36 isopeptidase complex (BRISC), although it is unclear whether this function relates to metabolism. Here we present the cryo-electron microscopy structure of the human BRISC-SHMT2 complex at a resolution of 3.8 Å. BRISC is a U-shaped dimer of four subunits, and SHMT2 sterically blocks the BRCC36 active site and inhibits deubiquitylase activity. Only the inactive SHMT2 dimer-and not the active PLP-bound tetramer-binds and inhibits BRISC. Mutations in BRISC that disrupt SHMT2 binding impair type I interferon signalling in response to inflammatory stimuli. Intracellular levels of PLP regulate the interaction between BRISC and SHMT2, as well as inflammatory cytokine responses. These data reveal a mechanism in which metabolites regulate deubiquitylase activity and inflammatory signalling.
Assuntos
Enzimas Desubiquitinantes/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Interferon Tipo I/imunologia , Complexos Multienzimáticos/imunologia , Complexos Multienzimáticos/metabolismo , Transdução de Sinais/imunologia , Microscopia Crioeletrônica , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/química , Enzimas Desubiquitinantes/ultraestrutura , Glicina Hidroximetiltransferase/ultraestrutura , Células HEK293 , Humanos , Inflamação/imunologia , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutação , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Fosfato de Piridoxal/metabolismoRESUMO
We look into dark solitons in a quasi-1D dipolar Bose gas and in a quantum droplet. We derive the analytical solitonic solution of a Gross-Pitaevskii-like equation accounting for beyond mean-field effects. The results show there is a certain critical value of the dipolar interactions, for which the width of a motionless soliton diverges. Moreover, there is a peculiar solution of the motionless soliton with a nonzero density minimum. We also present the energy spectrum of these solitons with an additional excitation subbranch appearing. Finally, we perform a series of numerical experiments revealing the coexistence of a dark soliton inside a quantum droplet.
RESUMO
ADP-ribosyltransferases (ARTs) are a widespread superfamily of enzymes frequently employed in pathogenic strategies of bacteria. Legionella pneumophila, the causative agent of a severe form of pneumonia known as Legionnaire's disease, has acquired over 330 translocated effectors that showcase remarkable biochemical and structural diversity. However, the ART effectors that influence L. pneumophila have not been well defined. Here, we took a bioinformatic approach to search the Legionella effector repertoire for additional divergent members of the ART superfamily and identified an ART domain in Legionella pneumophila gene0181, which we hereafter refer to as Legionella ADP-Ribosyltransferase 1 (Lart1) (Legionella ART 1). We show that L. pneumophila Lart1 targets a specific class of 120-kDa NAD+-dependent glutamate dehydrogenase (GDH) enzymes found in fungi and protists, including many natural hosts of Legionella. Lart1 targets a conserved arginine residue in the NAD+-binding pocket of GDH, thereby blocking oxidative deamination of glutamate. Therefore, Lart1 could be the first example of a Legionella effector which directly targets a host metabolic enzyme during infection.
Assuntos
ADP Ribose Transferases/química , Proteínas de Bactérias/química , Glutamato Desidrogenase/química , Legionella pneumophila/genética , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , ADP-Ribosilação , Sequência de Aminoácidos , Amoeba/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Desaminação , Escherichia coli/genética , Escherichia coli/metabolismo , Fungos , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Interações Hospedeiro-Patógeno , Cinética , Legionella pneumophila/enzimologia , Legionella pneumophila/patogenicidade , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por SubstratoRESUMO
Members of the New Kinase Family 3 (NKF3), PEAK1/SgK269 and Pragmin/SgK223 pseudokinases, have emerged as important regulators of cell motility and cancer progression. Here, we demonstrate that C19orf35 (PEAK3), a newly identified member of the NKF3 family, is a kinase-like protein evolutionarily conserved across mammals and birds and a regulator of cell motility. In contrast to its family members, which promote cell elongation when overexpressed in cells, PEAK3 overexpression does not have an elongating effect on cell shape but instead is associated with loss of actin filaments. Through an unbiased search for PEAK3 binding partners, we identified several regulators of cell motility, including the adaptor protein CrkII. We show that by binding to CrkII, PEAK3 prevents the formation of CrkII-dependent membrane ruffling. This function of PEAK3 is reliant upon its dimerization, which is mediated through a split helical dimerization domain conserved among all NKF3 family members. Disruption of the conserved DFG motif in the PEAK3 pseudokinase domain also interferes with its ability to dimerize and subsequently bind CrkII, suggesting that the conformation of the pseudokinase domain might play an important role in PEAK3 signaling. Hence, our data identify PEAK3 as an NKF3 family member with a unique role in cell motility driven by dimerization of its pseudokinase domain.
Assuntos
Proteínas do Citoesqueleto/metabolismo , Multimerização Proteica , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células COS , Membrana Celular/metabolismo , Forma Celular , Chlorocebus aethiops , Sequência Conservada , Proteínas do Citoesqueleto/química , Evolução Molecular , Células HEK293 , Humanos , Filogenia , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Proteínas Tirosina Quinases/químicaRESUMO
The transfer of a phosphate from ATP to a protein substrate, a modification known as protein phosphorylation, is catalyzed by protein kinases. Protein kinases play a crucial role in virtually every cellular activity. Recent studies of atypical protein kinases have highlighted the structural similarity of the kinase superfamily despite notable differences in primary amino acid sequence. Here, using a bioinformatics screen, we searched for putative protein kinases in the intracellular bacterial pathogen Legionella pneumophila and identified the type 4 secretion system effector Lpg2603 as a remote member of the protein kinase superfamily. Employing an array of biochemical and structural biology approaches, including in vitro kinase assays and isothermal titration calorimetry, we show that Lpg2603 is an active protein kinase with several atypical structural features. Importantly, we found that the eukaryote-specific host signaling molecule inositol hexakisphosphate (IP6) is required for Lpg2603 kinase activity. Crystal structures of Lpg2603 in the apo-form and when bound to IP6 revealed an active-site rearrangement that allows for ATP binding and catalysis. Our results on the structure and activity of Lpg2603 reveal a unique mode of regulation of a protein kinase, provide the first example of a bacterial kinase that requires IP6 for its activation, and may aid future work on the function of this effector during Legionella pathogenesis.
Assuntos
Interações Hospedeiro-Patógeno , Legionella pneumophila/enzimologia , Ácido Fítico/farmacologia , Proteínas Quinases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Legionella pneumophila/fisiologia , Modelos Moleculares , Conformação Proteica , Proteínas Quinases/químicaRESUMO
STUDY QUESTION: Is it possible to identify by mass spectrometry a wider range of proteins and key proteins involved in folliculogenesis and oocyte growth and development by studying follicular fluid (FF) from human small antral follicles (hSAF)? SUMMARY ANSWER: The largest number of proteins currently reported in human FF was identified in this study analysing hSAF where several proteins showed a strong relationship with follicular developmental processes. WHAT IS KNOWN ALREADY: Protein composition of human ovarian FF constitutes the microenvironment for oocyte development. Previous proteomics studies have analysed fluids from pre-ovulatory follicles, where large numbers of plasma constituents are transferred through the follicular basal membrane. This attenuates the detection of low abundant proteins, however, the basal membrane of small antral follicles is less permeable, making it possible to detect a large number of proteins, and thereby offering further insights in folliculogenesis. STUDY DESIGN, SIZE, DURATION: Proteins in FF from unstimulated hSAF (size 6.1 ± 0.4 mm) were characterised by mass spectrometry, supported by high-throughput and targeted proteomics and bioinformatics. The FF protein profiles from hSAF containing oocytes, capable or not of maturing to metaphase II of the second meiotic division during an IVM (n = 13, from 6 women), were also analysed. PARTICIPANTS/MATERIALS, SETTING, METHODS: We collected FF from hSAF of ovaries that had been surgically removed from 31 women (â¼28.5 years old) undergoing unilateral ovariectomy for fertility preservation. MAIN RESULTS AND THE ROLE OF CHANCE: In total, 2461 proteins were identified, of which 1108 identified for the first time in FF. Of the identified proteins, 24 were related to follicular regulatory processes. A total of 35 and 65 proteins were down- and up-regulated, respectively, in fluid from hSAF surrounding oocytes capable of maturing (to MII). We found that changes at the protein level occur already in FF from small antral follicles related to subsequent oocyte maturation. LIMITATIONS, REASONS FOR CAUTION: A possible limitation of our study is the uncertainty of the proportion of the sampled follicles that are undergoing atresia. Although the FF samples were carefully aspirated and processed to remove possible contaminants, we cannot ensure the absence of some proteins derived from cellular lysis provoked by technical reasons. WIDER IMPLICATIONS OF THE FINDINGS: This study is, to our knowledge, the first proteomics characterisation of FF from hSAF obtained from women in their natural menstrual cycle. We demonstrated that the analysis by mass spectrometry of FF from hSAF allows the identification of a greater number of proteins compared to the results obtained from previous analyses of larger follicles. Significant differences found at the protein level in hSAF fluid could predict the ability of the enclosed oocyte to sustain meiotic resumption. If this can be confirmed in further studies, it demonstrates that the viability of the oocyte is determined early on in follicular development and this may open up new pathways for augmenting or attenuating subsequent oocyte viability in the pre-ovulatory follicle ready to undergo ovulation. STUDY FUNDING/COMPETING INTEREST(S): The authors thank the financial support from ReproUnion, which is funded by the Interreg V EU programme. No conflict of interest was reported by the authors. TRIAL REGISTRATION NUMBER: N/A.
Assuntos
Folículo Ovariano , Proteoma , Adulto , Feminino , Líquido Folicular , Humanos , Oócitos , OogêneseRESUMO
The ability to induce a defense response after pathogen attack is a critical feature of the immune system of any organism. Nucleotide-binding leucine-rich repeat receptors (NLRs) are key players in this process and perceive the occurrence of nonself-activities or foreign molecules. In plants, coevolution with a variety of pests and pathogens has resulted in repertoires of several hundred diverse NLRs in single individuals and many more in populations as a whole. However, the mechanism by which defense signaling is triggered by these NLRs in plants is poorly understood. Here, we show that upon pathogen perception, NLRs use their N-terminal domains to transactivate other receptors. Their N-terminal domains homo- and heterodimerize, suggesting that plant NLRs oligomerize upon activation, similar to the vertebrate NLRs; however, consistent with their large number in plants, the complexes are highly heterometric. Also, in contrast to metazoan NLRs, the N-terminus, rather than their centrally located nucleotide-binding (NB) domain, can mediate initial partner selection. The highly redundant network of NLR interactions in plants is proposed to provide resilience to perturbation by pathogens.
Assuntos
Proteínas NLR/genética , Proteínas NLR/imunologia , Proteínas de Plantas/genética , Genoma de Planta/genética , Genoma de Planta/imunologia , Imunidade Inata , Lactuca/genética , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Plantas/genética , Plantas/imunologia , Domínios Proteicos/genética , Análise de Sequência de Proteína , Transdução de SinaisRESUMO
BACKGROUND: Pancreatic cancer is a major cause of cancer-related mortality. The identification of effective biomarkers is essential in order to improve management of the disease. Yes-associated protein 1 (YAP1) is a downstream effector of the Hippo pathway, a signal transduction system implicated in tissue repair and regeneration, as well as tumorigenesis. Here we evaluate the biomarker potential of YAP1 in pancreatic cancer tissue. METHODS: YAP1 was selected as a possible biomarker for pancreatic cancer from global protein sequencing of fresh frozen pancreatic cancer tissue samples and normal pancreas controls. The prognostic utility of YAP1 was evaluated using mRNA expression data from 176 pancreatic cancer patients in The Cancer Genome Atlas (TCGA), as well as protein expression data from immunohistochemistry analysis of a local tissue microarray (TMA) cohort comprising 140 pancreatic cancer patients. Ingenuity Pathway Analysis was applied to outline the interaction network for YAP1 in connection to the pancreatic tumor microenvironment. The expression of YAP1 target gene products was evaluated after treatment of the pancreatic cancer cell line Panc-1 with three substances interrupting YAP-TEAD interaction, including Super-TDU, Verteporfin and CA3. RESULTS: Mass spectrometry based proteomics showed that YAP1 is the top upregulated protein in pancreatic cancer tissue when compared to normal controls (log2 fold change 6.4; p = 5E-06). Prognostic analysis of YAP1 demonstrated a significant correlation between mRNA expression level data and reduced overall survival (p = 0.001). In addition, TMA and immunohistochemistry analysis suggested that YAP1 protein expression is an independent predictor of poor overall survival [hazard ratio (HR) 1.870, 95% confidence interval (CI) 1.224-2.855, p = 0.004], as well as reduced disease-free survival (HR 1.950, 95% CI 1.299-2.927, p = 0.001). Bioinformatic analyses coupled with in vitro assays indicated that YAP1 is involved in the transcriptional control of target genes, associated with extracellular matrix remodeling, which could be modified by selected substances disrupting the YAP1-TEAD interaction. CONCLUSIONS: Our findings indicate that YAP1 is an important prognostic biomarker for pancreatic cancer and may play a regulatory role in the remodeling of the extracellular matrix.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias Pancreáticas , Fatores de Transcrição , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/sangue , Carcinogênese , Matriz Extracelular , Humanos , Neoplasias Pancreáticas/genética , Prognóstico , Modelos de Riscos Proporcionais , Fatores de Transcrição/análise , Fatores de Transcrição/sangue , Microambiente Tumoral , Proteínas de Sinalização YAPRESUMO
The protein kinase-like clan/superfamily is a large group of regulatory, signaling and biosynthetic enzymes that were historically regarded as typically eukaryotic proteins, although bacterial members have also been known for a long time. In this review, we explore the diversity of bacterial protein kinase like families, and discuss functional versatility of these enzymes, both the ones acting within the bacterial cell, and those acting within eukaryotic cells as effectors during infection. We focus on novel bacterial kinase-like families discovered in the last five years. A bioinformatics perspective is held here, hence sequence and structure comparison overview is presented, and also a comparison of genomic neighbourhoods of the families. We perform a phylum-level census of the families. Also, we discuss apparent pseudokinases that turned out to perform alternative catalytic functions by repurposing their atypical kinase-like active sites. We also highlight some 'unpopular' kinase-like families that await characterisation.
Assuntos
Bactérias/enzimologia , Proteínas Quinases/metabolismo , Catálise , Biologia Computacional , Conformação Proteica , Proteínas Quinases/químicaRESUMO
We exploit a few- to many-body approach to study strongly interacting dipolar bosons in the quasi-one-dimensional system. The dipoles attract each other while the short range interactions are repulsive. Solving numerically the multiatom Schrödinger equation, we discover that such systems can exhibit not only the well-known bright soliton solutions but also novel quantum droplets for a strongly coupled case. For larger systems, basing on microscopic properties of the found few-body solution, we propose a new equation for a density amplitude of atoms. It accounts for fermionization for strongly repelling bosons by incorporating the Lieb-Liniger energy in a local density approximation and approaches the standard Gross-Pitaevskii equation (GPE) in the weakly interacting limit. Not only does such a framework provide an alternative mechanism of the droplet stability, but it also introduces means to further analyze this previously unexplored quantum phase. In the limiting strong repulsion case, yet another simple multiatom model is proposed. We stress that the celebrated Lee-Huang-Yang term in the GPE is not applicable in this case.
RESUMO
We experimentally and theoretically study phase coherence in two-component Bose-Einstein condensates of ^{87}Rb atoms on an atom chip. Using Ramsey interferometry we determine the temporal decay of coherence between the |F=1,m_{F}=-1⟩ and |F=2,m_{F}=+1⟩ hyperfine ground states. We observe that the coherence is limited by random collisional phase shifts due to the stochastic nature of atom loss. The mechanism is confirmed quantitatively by a quantum trajectory method based on a master equation which takes into account collisional interactions, atom number fluctuations, and losses in the system. This decoherence process can be slowed down by reducing the density of the condensate. Our findings are relevant for experiments on quantum metrology and many-particle entanglement with Bose-Einstein condensates and the development of chip-based atomic clocks.
RESUMO
In the advanced stages, malignant melanoma (MM) has a very poor prognosis. Due to tremendous efforts in cancer research over the last 10 years, and the introduction of novel therapies such as targeted therapies and immunomodulators, the rather dark horizon of the median survival has dramatically changed from under 1 year to several years. With the advent of proteomics, deep-mining studies can reach low-abundant expression levels. The complexity of the proteome, however, still surpasses the dynamic range capabilities of current analytical techniques. Consequently, many predicted protein products with potential biological functions have not yet been verified in experimental proteomic data. This category of 'missing proteins' (MP) is comprised of all proteins that have been predicted but are currently unverified. As part of the initiative launched in 2016 in the USA, the European Cancer Moonshot Center has performed numerous deep proteomics analyses on samples from MM patients. In this study, nine MPs were clearly identified by mass spectrometry in MM metastases. Some MPs significantly correlated with proteins that possess identical PFAM structural domains; and other MPs were significantly associated with cancer-related proteins. This is the first study to our knowledge, where unknown and novel proteins have been annotated in metastatic melanoma tumour tissue.
Assuntos
Melanoma/genética , Metástase Neoplásica/genética , Proteômica/métodos , Adulto , Biomarcadores Tumorais/genética , Feminino , Genoma Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular/métodos , Anotação de Sequência Molecular/tendências , Prognóstico , Proteoma/genética , Proteoma/metabolismo , Neoplasias Cutâneas/genética , Melanoma Maligno CutâneoRESUMO
Testosterone deficiency in males is associated with serious comorbidities such as cardiovascular disease, diabetes type two, and also an increased risk of premature death. The pathogenetic mechanism behind this association, however, has not yet been clarified and is potentially bidirectional. The aim of this clinical trial was to gain insight into the short-term effect of changes in testosterone on blood analytes in healthy young men. Thirty healthy young male volunteers were recruited and monitored in our designed human model. Blood sampling was performed prior to and 3 weeks after pharmacological castration with a gonadotropin-releasing hormone antagonist. Subsequently, testosterone replacement with 1000 mg testosterone undecanoate was given and additional blood samples were collected 2 weeks later. The alterations in the levels of 37 routine biomarkers were statistically analysed. Eight biomarkers changed significantly in a similar manner as testosterone between the time points (e.g. prostate specific antigen, creatinine and magnesium), whereas seven other markers changed in the inverse manner as testosterone, including sexual hormone-binding globulin, urea, aspartate aminotransferase and alanine aminotransferase. Most of our results were supported by data from other studies. The designed controlled human model yielded changes in known biomarkers suggesting that low testosterone has a negative effect on health in young healthy men.
Assuntos
Biomarcadores/sangue , Testosterona/análogos & derivados , Testosterona/sangue , Adulto , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Hormônio Foliculoestimulante/sangue , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Voluntários Saudáveis , Humanos , Libido/efeitos dos fármacos , Hormônio Luteinizante/sangue , Masculino , Antígeno Prostático Específico/sangue , Testosterona/efeitos adversos , Testosterona/deficiência , Testosterona/farmacologia , Fatores de TempoRESUMO
Melanoma of the skin is the sixth most common type of cancer in Europe and accounts for 3.4% of all diagnosed cancers. More alarming is the degree of recurrence that occurs with approximately 20% of patients lethally relapsing following treatment. Malignant melanoma is a highly aggressive skin cancer and metastases rapidly extend to the regional lymph nodes (stage 3) and to distal organs (stage 4). Targeted oncotherapy is one of the standard treatment for progressive stage 4 melanoma, and BRAF inhibitors (e.g. vemurafenib, dabrafenib) combined with MEK inhibitor (e.g. trametinib) can effectively counter BRAFV600E-mutated melanomas. Compared to conventional chemotherapy, targeted BRAFV600E inhibition achieves a significantly higher response rate. After a period of cancer control, however, most responsive patients develop resistance to the therapy and lethal progression. The many underlying factors potentially causing resistance to BRAF inhibitors have been extensively studied. Nevertheless, the remaining unsolved clinical questions necessitate alternative research approaches to address the molecular mechanisms underlying metastatic and treatment-resistant melanoma. In broader terms, proteomics can address clinical questions far beyond the reach of genomics, by measuring, i.e. the relative abundance of protein products, post-translational modifications (PTMs), protein localisation, turnover, protein interactions and protein function. More specifically, proteomic analysis of body fluids and tissues in a given medical and clinical setting can aid in the identification of cancer biomarkers and novel therapeutic targets. Achieving this goal requires the development of a robust and reproducible clinical proteomic platform that encompasses automated biobanking of patient samples, tissue sectioning and histological examination, efficient protein extraction, enzymatic digestion, mass spectrometry-based quantitative protein analysis by label-free or labelling technologies and/or enrichment of peptides with specific PTMs. By combining data from, e.g. phosphoproteomics and acetylomics, the protein expression profiles of different melanoma stages can provide a solid framework for understanding the biology and progression of the disease. When complemented by proteogenomics, customised protein sequence databases generated from patient-specific genomic and transcriptomic data aid in interpreting clinical proteomic biomarker data to provide a deeper and more comprehensive molecular characterisation of cellular functions underlying disease progression. In parallel to a streamlined, patient-centric, clinical proteomic pipeline, mass spectrometry-based imaging can aid in interrogating the spatial distribution of drugs and drug metabolites within tissues at single-cell resolution. These developments are an important advancement in studying drug action and efficacy in vivo and will aid in the development of more effective and safer strategies for the treatment of melanoma. A collaborative effort of gargantuan proportions between academia and healthcare professionals has led to the initiation, establishment and development of a cutting-edge cancer research centre with a specialisation in melanoma and lung cancer. The primary research focus of the European Cancer Moonshot Lund Center is to understand the impact that drugs have on cancer at an individualised and personalised level. Simultaneously, the centre increases awareness of the relentless battle against cancer and attracts global interest in the exceptional research performed at the centre.
Assuntos
Melanoma/patologia , Melanoma/terapia , Pesquisa Translacional Biomédica/métodos , Bancos de Espécimes Biológicos/tendências , Biomarcadores Tumorais , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Imidazóis/farmacologia , Melanoma/metabolismo , Estadiamento de Neoplasias , Oximas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Piridonas/farmacologia , Pirimidinonas/farmacologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Melanoma Maligno CutâneoRESUMO
The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis; however, the mechanism by which CotH affects germination is unclear. Here, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.