Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Nature ; 621(7978): 312-317, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37532941

RESUMO

The balance between degradation and preservation of sedimentary organic carbon (OC) is important for global carbon and oxygen cycles1. The relative importance of different mechanisms and environmental conditions contributing to marine sedimentary OC preservation, however, remains unclear2-8. Simple organic molecules can be geopolymerized into recalcitrant forms by means of the Maillard reaction5, although reaction kinetics at marine sedimentary temperatures are thought to be slow9,10. More recent work in terrestrial systems suggests that the reaction can be catalysed by manganese minerals11-13, but the potential for the promotion of geopolymerized OC formation at marine sedimentary temperatures is uncertain. Here we present incubation experiments and find that iron and manganese ions and minerals abiotically catalyse the Maillard reaction by up to two orders of magnitude at temperatures relevant to continental margins where most preservation occurs4. Furthermore, the chemical signature of the reaction products closely resembles dissolved and total OC found in continental margin sediments globally. With the aid of a pore-water model14, we estimate that iron- and manganese-catalysed transformation of simple organic molecules into complex macromolecules might generate on the order of approximately 4.1 Tg C yr-1 for preservation in marine sediments. In the context of perhaps only about 63 Tg C yr-1 variation in sedimentary organic preservation over the past 300 million years6, we propose that variable iron and manganese inputs to the ocean could exert a substantial but hitherto unexplored impact on global OC preservation over geological time.

2.
Environ Sci Technol ; 57(16): 6636-6646, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37042830

RESUMO

The Zn isotope fingerprint is widely used as a proxy of various environmental geochemical processes, so it is crucial to determine which are the mechanisms responsible for isotopic fractionation. Iron (Fe) (hydr)oxides greatly control the cycling and fate and thus isotope fractionation factors of Zn in terrestrial environments. Here, Zn isotope fractionation and related mechanisms during adsorption on and substitution in three FeOOH polymorphs are explored. Results demonstrate that heavy Zn isotopes are preferentially enriched onto solids, with almost similar isotopic offsets (Δ66/64Znsolid-solution = 0.25-0.36‰) for goethite, lepidocrocite, and feroxyhyte. This is consistent with the same average Zn-O bond lengths for adsorbed Zn on these solids as revealed by Zn K-edge X-ray absorption fine structure spectroscopy. In contrast, at an initial Zn/Fe molar ratio of 0.02, incorporation of Zn into goethite and lepidocrocite by substituting for lattice Fe preferentially sequesters light Zn isotopes with Δ66/64Znsubstituted-stock solution of -1.52 ± 0.09‰ and -1.18 ± 0.15‰, while Zn-substituted feroxyhyte (0.06 ± 0.11‰) indicates almost no isotope fractionation. This is closely related to the different crystal nucleation and growth rates during the Zn-doped FeOOH formation processes. These results provide direct experimental evidence of incorporation of isotopically light Zn into Fe (hydr)oxides and improve our understanding of Zn isotope fractionation mechanisms during mineral-solution interface processes.


Assuntos
Ferro , Zinco , Óxidos , Adsorção , Isótopos de Zinco , Isótopos
3.
Environ Sci Technol ; 57(45): 17501-17510, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37921659

RESUMO

The mobility of chromium (Cr) is controlled by minerals, especially iron (oxyhydr)oxides. The influence of organic carbon (OC) on the mobility and fate of Cr(VI) during Fe(II)-induced transformation of iron (oxyhydr)oxide, however, is still unclear. We investigate how low-weight carboxyl-rich OC influences the transformation of ferrihydrite (Fh) and controls the mobility of Cr(VI/III) in reducing environments and how Cr influences the formation of secondary Fe minerals and the stabilization of OC. With respect to the transformation of Fe minerals, the presence of low-weight carboxyl-rich OC retards the growth of goethite crystals and stabilizes lepidocrocite for a longer time. With respect to the mobility of Cr, low-weight carboxyl-rich OC suppresses the Cr(III)non-extractable associated with Fe minerals, and this suppression is enhanced with increasing carboxyl-richness of OC and decreasing pH. The presence of Cr(III) mitigates the decrease in total C associated with Fe minerals and increases the Cnon-extractable especially for Fh organominerals made with carboxyl-rich OC. Our study sheds new light on the mobility and fate of Cr in reducing environments and suggests that there is a potential synergy between Cr(VI) remediation and OC stabilization.


Assuntos
Carbono , Minerais , Oxirredução , Minerais/química , Compostos Férricos/química , Cromo/química , Ferro/química , Óxidos , Compostos Ferrosos
4.
Environ Microbiol ; 23(2): 924-933, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32827180

RESUMO

Autotrophic carbon dioxide (CO2 ) fixation by microbes is ubiquitous in the environment and potentially contributes to the soil organic carbon (SOC) pool. However, the multiple autotrophic pathways of microbial carbon assimilation and fixation in paddy soils remain poorly characterized. In this study, we combine metagenomic analysis with 14 C-labelling to investigate all known autotrophic pathways and CO2 assimilation mechanisms in five typical paddy soils from southern China. Marker genes of six autotrophic pathways are detected in all soil samples, which are dominated by the cbbL genes (67%-82%) coding the ribulose-bisphosphate carboxylase large chain in the Calvin cycle. These marker genes are associated with a broad range of phototrophic and chemotrophic genera. Significant amounts of 14 C-CO2 are assimilated into SOC (74.3-175.8 mg 14 C kg-1 ) and microbial biomass (5.2-24.1 mg 14 C kg-1 ) after 45 days incubation, where more than 70% of 14 C-SOC was concentrated in the relatively stable humin fractions. These results show that paddy soil microbes contain the genetic potential for autotrophic carbon fixation spreading over broad taxonomic ranges, and can incorporate atmospheric carbon into organic components, which ultimately contribute to the stable SOC pool.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Microbiologia do Solo , Processos Autotróficos , Bactérias/química , Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo do Carbono , Isótopos de Carbono/metabolismo , China , Marcação por Isótopo , Metagenoma , Metagenômica , Fotossíntese , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Solo/química
5.
Environ Sci Technol ; 55(17): 11601-11611, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34369749

RESUMO

Cadmium (Cd) isotopes have great potential for understanding Cd geochemical cycling in soil and aquatic systems. Iron (oxyhydr)oxides can sequester Cd via adsorption and isomorphous substitution, but how these interactions affect Cd isotope fractionation remains unknown. Here, we show that adsorption preferentially enriches lighter Cd isotopes on iron (oxyhydr)oxide surfaces through equilibrium fractionation, with a similar fractionation magnitude (Δ114/110Cdsolid-solution) for goethite (Goe) (-0.51 ± 0.04‰), hematite (Hem) (-0.54 ± 0.10‰), and ferrihydrite (Fh) (-0.55 ± 0.03‰). Neither the initial Cd2+ concentration or ionic strength nor the pH influence the fractionation magnitude. The enrichment of the light isotope is attributed to the adsorption of highly distorted [CdO6] on solids, as indicated by Cd K-edge extended X-ray absorption fine-structure analysis. In contrast, Cd incorporation into Goe by substitution for lattice Fe at a Cd/Fe molar ratio of 0.05 preferentially sequesters heavy Cd isotopes, with a Δ114/110Cdsolid-solution of 0.22 ± 0.01‰. The fractionation probably occurs during the transformation of Fh into Goe via dissolution and reprecipitation. These results improve the understanding of the Cd isotope fractionation behavior being affected by iron (oxyhydr)oxides in Earth's critical zone and demonstrate that interactions with minerals can obscure anthropogenic and natural Cd isotope characteristics, which should be carefully considered when applying Cd isotopes as environmental tracers.


Assuntos
Cádmio , Ferro , Adsorção , Isótopos , Minerais , Óxidos
6.
J Environ Manage ; 286: 112192, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33636630

RESUMO

The challenges of soil degradation and climate change have led to the emergence of Conservation Agriculture (CA) as a sustainable alternative to tillage-based agriculture systems. Despite the recognition of positive impacts on soil health, CA adoption in Africa has remained low. Previous soil health studies have mainly focused on 'scientific' measurements, without consideration of local knowledge, which influences how farmers interpret CA impacts and future land management decisions. This study, based in Malawi, aims to 1) combine local knowledge and conventional soil science approaches to develop a contextualised understanding of the impact of CA on soil health; and 2) understand how an integrated approach can contribute to explaining farmer decision-making on land management. Key farmers' indicators of soil health were crop performance, soil consistence, moisture content, erosion, colour, and structure. These local indicators were consistent with conventional soil health indicators. By combining farmers' observations with soil measurements, we observed that CA improved soil structure, moisture (Mwansambo 7.54%-38.15% lower for CP; Lemu 1.57%-47.39% lower for CP) and infiltration (Lemu CAM/CAML 0.15 cms-1, CP 0.09 cms-1; Mwansambo CP/CAM 0.14 cms-1, CAML 0.18 cms-1). In the conventional practice, farmers perceived ridges to redistribute nutrients, which corresponded with recorded higher exchangeable ammonium (Lemu CP 76.0 mgkg -1, CAM 49.4 mgkg -1, CAML 51.7 mgkg -1), nitrate/nitrite values (Mwansambo CP 200.7 mgkg -1, CAM 171.9 mgkg -1, CAML 103.3 mgkg -1). This perception contributes to the popularity of ridges, despite the higher yield measurements under CA (Mwansambo CP 3225 kgha-1, CAML 5067 kgha-1, CAM 5160 kgha-1; Lemu CP 2886 kgha-1, CAM 2872 kgha-1, CAML 3454 kgha-1 ). The perceived carbon benefits of residues and ridge preference has promoted burying residues in ridges. Integrated approaches contribute to more nuanced and localized perceptions about land management. We propose that the stepwise integrated soil assessment framework developed in this study can be applied more widely in understanding the role of soil health in farmer-decision making, providing a learning process for downscaling technologies and widening the evidence base on sustainable land management practices.


Assuntos
Conservação dos Recursos Naturais , Solo , Agricultura , Mudança Climática , Fazendeiros , Malaui
7.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32978123

RESUMO

The outer membrane c-type cytochromes (c-Cyts) OmcA and MtrC in Shewanella are key terminal reductases that bind and transfer electrons directly to iron (hydr)oxides. Although the amounts of OmcA and MtrC at the cell surface and their molecular structures are largely comparable, MtrC is known to play a more important role in dissimilatory iron reduction. To explore the roles of these outer membrane c-Cyts in the interaction of Shewanella oneidensis MR-1 with iron oxides, the processes of attachment of S. oneidensis MR-1 wild type and c-type cytochrome-deficient mutants (the ΔomcA, ΔmtrC, and ΔomcA ΔmtrC mutants) to goethite are compared via quartz crystal microbalance with dissipation monitoring (QCM-D). Strains with OmcA exhibit a rapid initial attachment. The quantitative model for QCM-D responses reveals that MtrC enhances the contact area and contact elasticity of cells with goethite by more than one and two times, respectively. In situ attenuated total reflectance Fourier transform infrared two-dimensional correlation spectroscopic (ATR-FTIR 2D-CoS) analysis shows that MtrC promotes the initial interfacial reaction via an inner-sphere coordination. Atomic force microscopy (AFM) analysis demonstrates that OmcA enhances the attractive force between cells and goethite by about 60%. As a result, OmcA contributes to a higher attractive force with goethite and induces a rapid short-term attachment, while MtrC is more important in the longer-term interaction through an enhanced contact area, which promotes interfacial reactions. These results reveal that c-Cyts OmcA and MtrC adopt different mechanisms for enhancing the attachment of S. oneidensis MR-1 cells to goethite. It improves our understanding of the function of outer membrane c-Cyts and the influence of cell surface macromolecules in cell-mineral interactions.IMPORTANCEShewanella species are one group of versatile and widespread dissimilatory iron-reducing bacteria, which are capable of respiring insoluble iron minerals via six multiheme c-type cytochromes. Outer membrane c-type cytochromes (c-Cyts) OmcA and MtrC are the terminal reductases in this pathway and have comparable protein structures. In this study, we elucidate the different roles of OmcA and MtrC in the interaction of S. oneidensis MR-1 with goethite at the whole-cell level. OmcA confers enhanced affinity toward goethite and results in rapid attachment. Meanwhile, MtrC significantly increases the contact area of bacterial cells with goethite and promotes the interfacial reaction, which may explain its central role in extracellular electron transfer. This study provides novel insights into the role of bacterial surface macromolecules in the interfacial interaction of bacteria with minerals, which is critical to the development of a comprehensive understanding of cell-mineral interactions.


Assuntos
Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Grupo dos Citocromos c/genética , Compostos de Ferro/metabolismo , Minerais/metabolismo , Shewanella/genética , Proteínas de Bactérias/metabolismo , Grupo dos Citocromos c/metabolismo , Shewanella/metabolismo
9.
Langmuir ; 32(12): 2937-46, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26938867

RESUMO

Strontium is an important contaminant radionuclide at many former nuclear sites. This paper investigates the effect of changing pH and ionic strength on the sorption of Sr to a range of common soil minerals. Specifically it focuses on the sorption of Sr onto illite, chlorite, goethite, and a mixed sediment. The interplay between ionic strength and pH was determined by varying the background ionic strength of the system using both NaCl (for a constant pH) and NaOH (to also vary pH). Under conditions of moderate pH, Sr sorption decreased with increasing ionic strength, due to competition between the Na and Sr atoms for the outer-sphere complexes. However, where increasing ionic strength was accompanied by increasing pH, Sr sorption remained high. This suggested that Sr was sorbed to the minerals without competition from background Na ions. Extended X-ray absorption fine structure (EXAFS) spectra confirmed that at highly alkaline pH (>12.5) Sr was forming inner-sphere complexes on the surfaces of all minerals. This specific adsorption of the Sr (as SrOH(+)) explains why it was still adsorbed to the minerals under very high ionic strength conditions and was not out-competed by Na.

10.
Philos Trans A Math Phys Eng Sci ; 373(2036)2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25624516

RESUMO

Diamond Light Source Ltd celebrated its 10th anniversary as a company in December 2012 and has now accepted user experiments for over 5 years. This paper describes the current facilities available at Diamond and future developments that enhance its capacities with respect to the Earth and environmental sciences. A review of relevant research conducted at Diamond thus far is provided. This highlights how synchrotron-based studies have brought about important advances in our understanding of the fundamental parameters controlling highly complex mineral-fluid-microbe interface reactions in the natural environment. This new knowledge not only enhances our understanding of global biogeochemical processes, but also provides the opportunity for interventions to be designed for environmental remediation and beneficial use.

11.
Environ Sci Technol ; 48(16): 8972-9, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25032506

RESUMO

The release of Se from shales is poorly understood because its occurrence, distribution, and speciation in the various components of shale are unknown. To address this gap we combined bulk characterization, sequential extractions, and spatially resolved µ-focus spectroscopic analyses and investigated the occurrence and distribution of Se and other associated elements (Fe, As, Cr, Ni, and Zn) and determined the Se speciation at the µ-scale in typical, low bulk Se containing shales. Our results revealed Se primarily correlated with the pyrite fraction with exact Se speciation highly dependent on pyrite morphology. In euhedral pyrites, we found Se(-II) substitutes for S in the mineral structure. However, we also demonstrate that Se is associated with framboidal pyrite grains as a discrete, independent FeSex phase. The presence of this FeSex species has major implications for Se release, because FeSex species oxidize much faster than Se substituted in the euhedral pyrite lattice. Thus, such an FeSex species will enhance and control the dynamics of Se weathering and release into the aqueous environment.


Assuntos
Poluentes Ambientais/análise , Sedimentos Geológicos/química , Ferro/química , Selênio/análise , Sulfetos/química , Monitoramento Ambiental , Minerais/química , Espectrometria por Raios X , Propriedades de Superfície , Reino Unido , Espectroscopia por Absorção de Raios X
12.
Environ Sci Technol ; 47(12): 6527-35, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23683000

RESUMO

Red mud leachate (pH 13) collected from Ajka, Hungary is neutralized to < pH 10 by HCl, gypsum, or seawater addition. During acid neutralization >99% Al is removed from solution during the formation of an amorphous boehmite-like precipitate and dawsonite. Minor amounts of As (24%) are also removed from solution via surface adsorption of As onto the Al oxyhydroxides. Gypsum addition to red mud leachate results in the precipitation of calcite, both in experiments and in field samples recovered from rivers treated with gypsum after the October 2010 red mud spill. Calcite precipitation results in 86% Al and 81% As removal from solution, and both are nonexchangeable with 0.1 mol L(-1) phosphate solution. Contrary to As associated with neoformed Al oxyhydroxides, EXAFS analysis of the calcite precipitates revealed only isolated arsenate tetrahedra with no evidence for surface adsorption or incorporation into the calcite structure, possibly as a result of very rapid As scavenging by the calcite precipitate. Seawater neutralization also resulted in carbonate precipitation, with >99% Al and 74% As removed from solution during the formation of a poorly ordered hydrotalcite phase and via surface adsorption to the neoformed precipitates, respectively. Half the bound As could be remobilized by phosphate addition, indicating that As was weakly bound, possibly in the hydrotalcite interlayer. Only 5-16% V was removed from solution during neutralization, demonstrating a lack of interaction with any of the neoformed precipitates. High V concentrations are therefore likely to be an intractable problem during the treatment of red mud leachates.


Assuntos
Alumínio/química , Arsênio/química , Sulfato de Cálcio/química , Ácido Clorídrico/química , Água do Mar/química , Vanádio/química
13.
Nat Commun ; 14(1): 4226, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454222

RESUMO

The role of microbial interactions and the underlying mechanisms that shape complex biofilm communities are poorly understood. Here we employ a microfluidic chip to represent porous subsurface environments and show that cooperative microbial interactions between free-living and biofilm-forming bacteria trigger active spatial segregation to promote their respective dominance in segregated microhabitats. During initial colonization, free-living and biofilm-forming microbes are segregated from the mixed planktonic inoculum to occupy the ambient fluid and grain surface. Contrary to spatial exclusion through competition, the active spatial segregation is induced by cooperative interactions which improves the fitness of both biofilm and planktonic populations. We further show that free-living Arthrobacter induces the surface colonization by scavenging the biofilm inhibitor, D-amino acids and receives benefits from the public goods secreted by the biofilm-forming strains. Collectively, our results reveal how cooperative microbial interactions may contribute to microbial coexistence in segregated microhabitats and drive subsurface biofilm community succession.


Assuntos
Biofilmes , Interações Microbianas , Porosidade , Bactérias , Plâncton
14.
Environ Sci Technol ; 46(6): 3085-92, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22324637

RESUMO

Results are presented from X-ray absorption spectroscopy based analysis of As, Cr, and V speciation within samples of bauxite ore processing residue (red mud) collected from the spill site at Ajka, Western Hungary. Cr K-edge XANES analysis found that Cr is present as Cr(3+) substituted into hematite, consistent with TEM analysis. V K-edge XANES spectra have E(1/2) position and pre-edge features consistent with the presence of V(5+) species, possibly associated with Ca-aluminosilicate phases. As K-edge XANES spectra identified As present as As(5+). EXAFS analysis reveals arsenate phases in red mud samples. When alkaline leachate from the spill site is neutralized with HCl, 94% As and 71% V are removed from solution during the formation of amorphous Al-oxyhydroxide. EXAFS analysis of As in this precipitate reveals the presence of arsenate Al-oxyhydroxide surface complexes. These results suggest that in the circumneutral pH, oxic conditions found in the Torna and Upper Marcal catchments, incorporation and sorption, respectively, will restrict the environmental mobility of Cr and As. V is inefficiently removed from solution by neutralization, therefore, the red mud may act as a source of mobile V(5+) where the red mud deposits are not removed from affected land.


Assuntos
Arsênio/análise , Cromo/análise , Resíduos Industriais/análise , Poluentes do Solo/análise , Vanádio/análise , Poluentes Químicos da Água/análise , Óxido de Alumínio/química , Monitoramento Ambiental , Indústrias Extrativas e de Processamento , Hungria , Microscopia Eletrônica de Transmissão , Espectroscopia por Absorção de Raios X , Difração de Raios X
15.
Nat Commun ; 13(1): 2722, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581283

RESUMO

Minerals are widely proposed to protect organic carbon from degradation and thus promote the persistence of organic carbon in soils and sediments, yet a direct link between mineral adsorption and retardation of microbial remineralisation is often presumed and a mechanistic understanding of the protective preservation hypothesis is lacking. We find that methylamines, the major substrates for cryptic methane production in marine surface sediment, are strongly adsorbed by marine sediment clays, and that this adsorption significantly reduces their concentrations in the dissolved pool (up to 40.2 ± 0.2%). Moreover, the presence of clay minerals slows methane production and reduces final methane produced (up to 24.9 ± 0.3%) by a typical methylotrophic methanogen-Methanococcoides methylutens TMA-10. Near edge X-ray absorption fine structure spectroscopy shows that reversible adsorption and occlusive protection of methylamines in clay interlayers are responsible for the slow-down and reduction in methane production. Here we show that mineral-OC interactions strongly control methylotrophic methanogenesis and potentially cryptic methane cycling in marine surface sediments.


Assuntos
Sedimentos Geológicos , Metano , Carbono/metabolismo , Argila , Sedimentos Geológicos/química , Metano/metabolismo , Metilaminas
16.
Nat Nanotechnol ; 17(12): 1342-1351, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36443601

RESUMO

Artificial ocean fertilization (AOF) aims to safely stimulate phytoplankton growth in the ocean and enhance carbon sequestration. AOF carbon sequestration efficiency appears lower than natural ocean fertilization processes due mainly to the low bioavailability of added nutrients, along with low export rates of AOF-produced biomass to the deep ocean. Here we explore the potential application of engineered nanoparticles (ENPs) to overcome these issues. Data from 123 studies show that some ENPs may enhance phytoplankton growth at concentrations below those likely to be toxic in marine ecosystems. ENPs may also increase bloom lifetime, boost phytoplankton aggregation and carbon export, and address secondary limiting factors in AOF. Life-cycle assessment and cost analyses suggest that net CO2 capture is possible for iron, SiO2 and Al2O3 ENPs with costs of 2-5 times that of conventional AOF, whereas boosting AOF efficiency by ENPs should substantially enhance net CO2 capture and reduce these costs. Therefore, ENP-based AOF can be an important component of the mitigation strategy to limit global warming.


Assuntos
Dióxido de Carbono , Nanopartículas , Ecossistema , Dióxido de Silício , Fitoplâncton , Oceanos e Mares , Fertilização
17.
J Hazard Mater ; 402: 123433, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32683153

RESUMO

Pb contamination of soils is a global problem. This paper discusses the ability of an Fe-rich waste, water treatment residual (WTR), to adsorb Pb(II). This was investigated using batch sorption experiments, X-ray diffraction, electron microprobe microanalysis, PHREEQC modeling and Extended X-ray Absorption Fine Structure (EXAFS) analysis. The WTR is composed of approximately 23 wt. % natural organic matter (NOM), 70 wt. % ferrihydrite and <10 wt. % silicate material. Pb(II) sorption to WTR was dependent on initial Pb(II) load, particle size, time and pH, but not on ionic strength. EXAFS analysis at the Pb LIII-edge confirmed that Pb(II) sorbed to WTR by co-existing bidentate edge-sharing and monodentate or corner-sharing complexes, with 2 O at ∼2.31-2.34 Å, 1 Fe at ∼3.32-3.34 Å, 2 Fe at ∼3.97-3.99 Å and 1 Pb at ∼3.82-3.85 Å. Linear combination showed that the Pb(II)-sorbed spectra were best fit with a ∼0.9 ± 0.1 and 0.1 ± 0.1 contribution from Pb(II)-sorbed ferrihydrite and Pb(II)-sorbed humic acid end members, respectively. Overall, we show that Pb(II) sorbs via strong inner-sphere complexation of Pb(II) to the ferrihydrite component of the WTR, which itself is stable over a wide pH range. Therefore, we suggest that Fe-rich WTR wastes could be used as effective adsorbents in Pb(II)-contaminated soils to help ensure sustainable terrestrial ecosystems.

18.
J Hazard Mater ; 390: 122014, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32007858

RESUMO

Aluminum substitution is common in iron (hydr)oxides in subsurface environments, and can significantly modify mineral interactions with contaminants. However, few studies investigate Cr(VI) adsorption and its subsequent mobility on Al-substituted iron (hydr)oxide surfaces. Here shows that Al substitution gradually modifies hematite crystals from {101}, {112}, {110} and {104} faceted rhombohedra to {001} faceted plates, resulting in a general decrease in Cr(VI) adsorption density and favoring of monodentate mononuclear over bidentate binuclear Cr(VI) adsorption complexes. Consequently, the mobility of Cr(VI) might be increased in environments with an abundance of Al-containing iron (hydr)oxides. However, pre-adsorption of Fe2+ on hematite promotes Cr(VI) adsorption, reduction and fixation, and Al-substituted hematite removes more Cr(VI) than pure hematite. Similarly, although addition of Fe2+ to Cr(VI)-adsorbed hematite remobilizes a small proportion of Cr, it greatly increases the proportion of Cr fixed. As the coexistence of Fe2+ and iron (hydr)oxides is common in subsurface environments, Al-containing iron (hydr)oxides will promote Cr(VI) uptake and retention, with a significant proportion fixed as Cr(III), limiting Cr mobility and toxicity. These results offer new insights into how iron (hydr)oxides might control the behaviors of other high-valence redox-sensitive contaminants, and provide a platform for modeling such processes in complex soil and sediment systems.

19.
Chemosphere ; 224: 103-110, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30818188

RESUMO

Arsenic mobility in soils, sediments and groundwater systems is strongly controlled by adsorption occurring at iron oxide/water interfaces, and the extent of this adsorption may be influenced by the presence of natural organic matter (NOM). This study aims to investigate the adsorption of As(III) and As(V) onto coprecipitates made with ferrihydrite (Fh) and humic acid (HA) with two organic carbon (OC) loadings of 5 and 15 wt% OC. We show that the coprecipitation of HA with Fh can significantly reduce the retention of both As(III) and As(V) over a wide pH range (4-11), and with increased OC loading, there is reduced arsenic adsorption. On pure Fh, As(III) is adsorbed to a greater extent than As(V) at pH > 6.5 (the crossover pH), whereas the crossover pH shifts to more acidic pH in the presence of HA, implying that the binding of As(III) is more favorable than As(V) in the presence of NOM. Both As(III) and As(V) are complexed with the ferric hydroxyl functional groups, and no ternary Fh-HA-As complexes are detected. We observe that ∼40% of the adsorbed As(III) is oxidized to As(V) on pure Fh, compared to only ∼29% of As(III) oxidation on the Fh-HA coprecipitate, indicating that NOM hinders As(III) oxidation on iron (hydr)oxide. The results of this study suggest that NOM interacts with arsenic in ways that promote arsenic mobility and especially promote the mobility of arsenate relative to arsenite, which is of great significance for evaluating the migration and bioavailability of arsenic in both natural and contaminated environments.


Assuntos
Arseniatos/química , Arsenitos/química , Compostos Férricos/química , Adsorção , Precipitação Química , Substâncias Húmicas , Minerais/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA