Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Nat Immunol ; 21(10): 1244-1255, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32747817

RESUMO

Follicular helper T (TFH) cells are implicated in type 1 diabetes (T1D), and their development has been linked to CD28 costimulation. We tested whether TFH cells were decreased by costimulation blockade using the CTLA-4-immunoglobulin (Ig) fusion protein (abatacept) in a mouse model of diabetes and in individuals with new-onset T1D. Unbiased bioinformatics analysis identified that inducible costimulatory molecule (ICOS)+ TFH cells and other ICOS+ populations, including peripheral helper T cells, were highly sensitive to costimulation blockade. We used pretreatment TFH profiles to derive a model that could predict clinical response to abatacept in individuals with T1D. Using two independent approaches, we demonstrated that higher frequencies of ICOS+ TFH cells at baseline were associated with a poor clinical response following abatacept administration. Therefore, TFH analysis may represent a new stratification tool, permitting the identification of individuals most likely to benefit from costimulation blockade.


Assuntos
Abatacepte/uso terapêutico , Antígenos CD28/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Centro Germinativo/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Linfócitos T Auxiliares-Indutores/imunologia , Abatacepte/farmacologia , Animais , Biomarcadores Farmacológicos , Antígenos CD28/genética , Células Cultivadas , Biologia Computacional , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/terapia , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Resultado do Tratamento
2.
Nat Immunol ; 17(8): 946-55, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27348411

RESUMO

Studies of individual T cell antigen receptors (TCRs) have shed some light on structural features that underlie self-reactivity. However, the general rules that can be used to predict whether TCRs are self-reactive have not been fully elucidated. Here we found that the interfacial hydrophobicity of amino acids at positions 6 and 7 of the complementarity-determining region CDR3ß robustly promoted the development of self-reactive TCRs. This property was found irrespective of the member of the ß-chain variable region (Vß) family present in the TCR or the length of the CDR3ß. An index based on these findings distinguished Vß2(+), Vß6(+) and Vß8.2(+) regulatory T cells from conventional T cells and also distinguished CD4(+) T cells selected by the major histocompatibility complex (MHC) class II molecule I-A(g7) (associated with the development of type 1 diabetes in NOD mice) from those selected by a non-autoimmunity-promoting MHC class II molecule I-A(b). Our results provide a means for distinguishing normal T cell repertoires versus autoimmunity-prone T cell repertoires.


Assuntos
Autoimunidade , Regiões Determinantes de Complementaridade/genética , Diabetes Mellitus Tipo 1/imunologia , Subpopulações de Linfócitos T/fisiologia , Linfócitos T Reguladores/fisiologia , Animais , Autoantígenos/imunologia , Autoantígenos/metabolismo , Diferenciação Celular , Tolerância Central , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout
3.
Nat Immunol ; 17(2): 204-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26726811

RESUMO

Adjuvanted vaccines afford invaluable protection against disease, and the molecular and cellular changes they induce offer direct insight into human immunobiology. Here we show that within 24 h of receiving adjuvanted swine flu vaccine, healthy individuals made expansive, complex molecular and cellular responses that included overt lymphoid as well as myeloid contributions. Unexpectedly, this early response was subtly but significantly different in people older than ∼35 years. Wide-ranging adverse clinical events can seriously confound vaccine adoption, but whether there are immunological correlates of these is unknown. Here we identify a molecular signature of adverse events that was commonly associated with an existing B cell phenotype. Thus immunophenotypic variation among healthy humans may be manifest in complex pathophysiological responses.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Adjuvantes Imunológicos , Adolescente , Adulto , Fatores Etários , Idoso , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Autoimunidade , Linfócitos B/imunologia , Linfócitos B/metabolismo , Análise por Conglomerados , Citocinas/sangue , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Vacinas contra Influenza/efeitos adversos , Influenza Humana/prevenção & controle , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Células Mieloides/imunologia , Células Mieloides/metabolismo , Fenótipo , Fatores de Tempo , Transcriptoma , Vacinação , Adulto Jovem
4.
Diabetologia ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832971

RESUMO

AIMS/HYPOTHESIS: The gut microbiome is implicated in the disease process leading to clinical type 1 diabetes, but less is known about potential changes in the gut microbiome after the diagnosis of type 1 diabetes and implications in glucose homeostasis. We aimed to analyse potential associations between the gut microbiome composition and clinical and laboratory data during a 2 year follow-up of people with newly diagnosed type 1 diabetes, recruited to the Innovative approaches to understanding and arresting type 1 diabetes (INNODIA) study. In addition, we analysed the microbiome composition in initially unaffected family members, who progressed to clinical type 1 diabetes during or after their follow-up for 4 years. METHODS: We characterised the gut microbiome composition of 98 individuals with newly diagnosed type 1 diabetes (ND cohort) and 194 autoantibody-positive unaffected family members (UFM cohort), representing a subgroup of the INNODIA Natural History Study, using metagenomic sequencing. Participants from the ND cohort attended study visits within 6 weeks from the diagnosis and 3, 6, 12 and 24 months later for stool sample collection and laboratory tests (HbA1c, C-peptide, diabetes-associated autoantibodies). Participants from the UFM cohort were assessed at baseline and 6, 12, 18, 24 and 36 months later. RESULTS: We observed a longitudinal increase in 21 bacterial species in the ND cohort but not in the UFM cohort. The relative abundance of Faecalibacterium prausnitzii was inversely associated with the HbA1c levels at diagnosis (p=0.0019). The rate of the subsequent disease progression in the ND cohort, as assessed by change in HbA1c, C-peptide levels and insulin dose, was associated with the abundance of several bacterial species. Individuals with rapid decrease in C-peptide levels in the ND cohort had the lowest gut microbiome diversity. Nineteen individuals who were diagnosed with type 1 diabetes in the UFM cohort had increased abundance of Sutterella sp. KLE1602 compared with the undiagnosed UFM individuals (p=1.2 × 10-4). CONCLUSIONS/INTERPRETATION: Our data revealed associations between the gut microbiome composition and the disease progression in individuals with recent-onset type 1 diabetes. Future mechanistic studies as well as animal studies and human trials are needed to further validate the significance and causality of these associations.

5.
Diabetologia ; 67(6): 995-1008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517484

RESUMO

AIMS/HYPOTHESIS: Type 1 diabetes is an heterogenous condition. Characterising factors explaining differences in an individual's clinical course and treatment response will have important clinical and research implications. Our aim was to explore type 1 diabetes heterogeneity, as assessed by clinical characteristics, autoantibodies, beta cell function and glycaemic outcomes, during the first 12 months from diagnosis, and how it relates to age at diagnosis. METHODS: Data were collected from the large INNODIA cohort of individuals (aged 1.0-45.0 years) newly diagnosed with type 1 diabetes, followed 3 monthly, to assess clinical characteristics, C-peptide, HbA1c and diabetes-associated antibodies, and their changes, during the first 12 months from diagnosis, across three age groups: <10 years; 10-17 years; and ≥18 years. RESULTS: The study population included 649 individuals (57.3% male; age 12.1±8.3 years), 96.9% of whom were positive for one or more diabetes-related antibodies. Baseline (IQR) fasting C-peptide was 242.0 (139.0-382.0) pmol/l (AUC 749.3 [466.2-1106.1] pmol/l × min), with levels increasing with age (p<0.001). Over time, C-peptide remained lower in participants aged <10 years but it declined in all age groups. In parallel, glucose levels progressively increased. Lower baseline fasting C-peptide, BMI SD score and presence of diabetic ketoacidosis at diagnosis were associated with lower stimulated C-peptide over time. HbA1c decreased during the first 3 months (p<0.001), whereas insulin requirement increased from 3 months post diagnosis (p<0.001). CONCLUSIONS/INTERPRETATION: In this large cohort with newly diagnosed type 1 diabetes, we identified age-related differences in clinical and biochemical variables. Of note, C-peptide was lower in younger children but there were no main age differences in its rate of decline.


Assuntos
Autoanticorpos , Peptídeo C , Diabetes Mellitus Tipo 1 , Hemoglobinas Glicadas , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/epidemiologia , Adolescente , Criança , Masculino , Feminino , Peptídeo C/sangue , Adulto , Adulto Jovem , Pré-Escolar , Autoanticorpos/sangue , Hemoglobinas Glicadas/metabolismo , Glicemia/metabolismo , Estudos de Coortes , Lactente , Europa (Continente)/epidemiologia , Pessoa de Meia-Idade , Células Secretoras de Insulina/metabolismo
6.
Nat Immunol ; 13(3): 283-9, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22245737

RESUMO

The structural characteristics of the engagement of major histocompatibility complex (MHC) class II-restricted self antigens by autoreactive T cell antigen receptors (TCRs) is established, but how autoimmune TCRs interact with complexes of self peptide and MHC class I has been unclear. Here we examined how CD8(+) T cells kill human islet beta cells in type 1 diabetes via recognition of a human leukocyte antigen HLA-A*0201-restricted glucose-sensitive preproinsulin peptide by the autoreactive TCR 1E6. Rigid 'lock-and-key' binding underpinned the 1E6-HLA-A*0201-peptide interaction, whereby 1E6 docked similarly to most MHC class I-restricted TCRs. However, this interaction was extraordinarily weak because of limited contacts with MHC class I. TCR binding was highly peptide centric, dominated by two residues of the complementarity-determining region 3 (CDR3) loops that acted as an 'aromatic-cap' over the complex of peptide and MHC class I (pMHCI). Thus, highly focused peptide-centric interactions associated with suboptimal TCR-pMHCI binding affinities might lead to thymic escape and potential CD8(+) T cell-mediated autoreactivity.


Assuntos
Apoptose , Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/imunologia , Linfócitos T CD8-Positivos/química , Antígenos de Histocompatibilidade/imunologia , Humanos , Células Secretoras de Insulina/patologia , Modelos Moleculares , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia
7.
Diabetes Metab Res Rev ; 40(5): e3833, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961656

RESUMO

AIMS: Heterogeneity in the rate of ß-cell loss in newly diagnosed type 1 diabetes patients is poorly understood and creates a barrier to designing and interpreting disease-modifying clinical trials. Integrative analyses of baseline multi-omics data obtained after the diagnosis of type 1 diabetes may provide mechanistic insight into the diverse rates of disease progression after type 1 diabetes diagnosis. METHODS: We collected samples in a pan-European consortium that enabled the concerted analysis of five different omics modalities in data from 97 newly diagnosed patients. In this study, we used Multi-Omics Factor Analysis to identify molecular signatures correlating with post-diagnosis decline in ß-cell mass measured as fasting C-peptide. RESULTS: Two molecular signatures were significantly correlated with fasting C-peptide levels. One signature showed a correlation to neutrophil degranulation, cytokine signalling, lymphoid and non-lymphoid cell interactions and G-protein coupled receptor signalling events that were inversely associated with a rapid decline in ß-cell function. The second signature was related to translation and viral infection was inversely associated with change in ß-cell function. In addition, the immunomics data revealed a Natural Killer cell signature associated with rapid ß-cell decline. CONCLUSIONS: Features that differ between individuals with slow and rapid decline in ß-cell mass could be valuable in staging and prediction of the rate of disease progression and thus enable smarter (shorter and smaller) trial designs for disease modifying therapies as well as offering biomarkers of therapeutic effect.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/metabolismo , Feminino , Masculino , Adulto , Progressão da Doença , Biomarcadores/análise , Seguimentos , Adolescente , Adulto Jovem , Prognóstico , Proteômica , Peptídeo C/análise , Peptídeo C/sangue , Criança , Pessoa de Meia-Idade , Genômica , Multiômica
8.
Br J Dermatol ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836560

RESUMO

Atopic dermatitis (AD) is a heterogeneous inflammatory condition involving multiple immune pathways mediated by pathogenic T cells. OX40 Ligand (OX40L) and OX40 are co-stimulatory immune checkpoint molecules that regulate effector and memory T cell activity and promote sustained immune responses in multiple immunological pathways, including Th2, Th1, Th17 and Th22. As such, OX40L/OX40 signalling between antigen-presenting cells (APCs) and activated T cells post-antigen recognition promotes pathogenic T cell proliferation and survival. Under inflammatory conditions, OX40L is upregulated on APCs, enhancing the magnitude of antigen-specific T cell responses and secretion of proinflammatory cytokines. In AD, OX40L/OX40 signalling contributes to the amplification and chronic persistence of T-cell mediated inflammation. Recent therapeutic success in clinical trials has highlighted the importance of the OX40L/OX40 axis as a promising target for the treatment of AD. Here we discuss the many factors that are involved in the expression of OX40L and OX40, including the cytokine milieu, antigen presentation, the inflammatory environment in AD, and the therapeutic direction influenced by this co-stimulatory pathway.

9.
Diabetologia ; 66(11): 1983-1996, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37537394

RESUMO

AIMS/HYPOTHESIS: There is a growing need for markers that could help indicate the decline in beta cell function and recognise the need and efficacy of intervention in type 1 diabetes. Measurements of suitably selected serum markers could potentially provide a non-invasive and easily applicable solution to this challenge. Accordingly, we evaluated a broad panel of proteins previously associated with type 1 diabetes in serum from newly diagnosed individuals during the first year from diagnosis. To uncover associations with beta cell function, comparisons were made between these targeted proteomics measurements and changes in fasting C-peptide levels. To further distinguish proteins linked with the disease status, comparisons were made with measurements of the protein targets in age- and sex-matched autoantibody-negative unaffected family members (UFMs). METHODS: Selected reaction monitoring (SRM) mass spectrometry analyses of serum, targeting 85 type 1 diabetes-associated proteins, were made. Sera from individuals diagnosed under 18 years (n=86) were drawn within 6 weeks of diagnosis and at 3, 6 and 12 months afterwards (288 samples in total). The SRM data were compared with fasting C-peptide/glucose data, which was interpreted as a measure of beta cell function. The protein data were further compared with cross-sectional SRM measurements from UFMs (n=194). RESULTS: Eleven proteins had statistically significant associations with fasting C-peptide/glucose. Of these, apolipoprotein L1 and glutathione peroxidase 3 (GPX3) displayed the strongest positive and inverse associations, respectively. Changes in GPX3 levels during the first year after diagnosis indicated future fasting C-peptide/glucose levels. In addition, differences in the levels of 13 proteins were observed between the individuals with type 1 diabetes and the matched UFMs. These included GPX3, transthyretin, prothrombin, apolipoprotein C1 and members of the IGF family. CONCLUSIONS/INTERPRETATION: The association of several targeted proteins with fasting C-peptide/glucose levels in the first year after diagnosis suggests their connection with the underlying changes accompanying alterations in beta cell function in type 1 diabetes. Moreover, the direction of change in GPX3 during the first year was indicative of subsequent fasting C-peptide/glucose levels, and supports further investigation of this and other serum protein measurements in future studies of beta cell function in type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Adolescente , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo C , Proteômica , Estudos Transversais , Jejum , Glucose , Insulina/metabolismo , Glicemia/metabolismo
11.
Nano Lett ; 22(11): 4376-4382, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616515

RESUMO

Autoimmune diseases and in particular type 1 diabetes rely heavily on treatments that target the symptoms rather than prevent the underlying disease. One of the barriers to better therapeutic strategies is the inability to detect and efficiently target rare autoreactive T-cell populations that are major drivers of these conditions. Here, we develop a unique artificial antigen-presenting cell (aAPC) system from biocompatible polymer particles that allows specific encapsulation of bioactive ingredients. Using our aAPC, we demonstrate that we are able to detect rare autoreactive CD4 populations in human patients, and using mouse models, we demonstrate that our particles are able to induce desensitization in the autoreactive population. This system provides a promising tool that can be used in the prevention of autoimmunity before disease onset.


Assuntos
Diabetes Mellitus Tipo 1 , Linfócitos T , Animais , Células Apresentadoras de Antígenos , Autoimunidade , Linfócitos T CD4-Positivos , Diabetes Mellitus Tipo 1/terapia , Humanos , Camundongos
12.
Diabetologia ; 65(10): 1701-1709, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867130

RESUMO

AIMS/HYPOTHESIS: Enteroviral infection has been implicated consistently as a key environmental factor correlating with the appearance of autoimmunity and/or the presence of overt type 1 diabetes, in which pancreatic insulin-producing beta cells are destroyed by an autoimmune response. Genetic predisposition through variation in the type 1 diabetes risk gene IFIH1 (interferon induced with helicase C domain 1), which encodes the viral pattern-recognition receptor melanoma differentiation-associated protein 5 (MDA5), supports a potential link between enterovirus infection and type 1 diabetes. METHODS: We used molecular techniques to detect enterovirus RNA in peripheral blood samples (in separated cellular compartments or plasma) from two cohorts comprising 79 children or 72 adults that include individuals with and without type 1 diabetes who had multiple autoantibodies. We also used immunohistochemistry to detect the enteroviral protein VP1 in the pancreatic islets of post-mortem donors (n=43) with type 1 diabetes. RESULTS: We observed enhanced detection sensitivity when sampling the cellular compartment compared with the non-cellular compartment of peripheral blood (OR 21.69; 95% CI 3.64, 229.20; p<0.0001). In addition, we show that children with autoimmunity are more likely to test positive for enterovirus RNA than those without autoimmunity (OR 11.60; 95% CI 1.89, 126.90; p=0.0065). Furthermore, we found that individuals carrying the predisposing allele (946Thr) of the common variant in IFIH1 (rs1990760, Thr946Ala) are more likely to test positive for enterovirus in peripheral blood (OR 3.07; 95% CI 1.02, 8.58; p=0.045). In contrast, using immunohistochemistry, there was no correlation between the common variant in IFIH1 and detection of enteroviral VP1 protein in the pancreatic islets of donors with type 1 diabetes. CONCLUSIONS/INTERPRETATION: Our data indicate that, in peripheral blood, antigen-presenting cells are the predominant source of enterovirus infection, and that infection is correlated with disease stage and genetic predisposition, thereby supporting a role for enterovirus infection prior to disease onset.


Assuntos
Diabetes Mellitus Tipo 1 , Infecções por Enterovirus , Enterovirus , Insulinas , Adulto , Alelos , Autoanticorpos/metabolismo , Criança , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Enterovirus/genética , Infecções por Enterovirus/genética , Predisposição Genética para Doença , Humanos , Insulinas/genética , Insulinas/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Leucócitos Mononucleares/metabolismo , RNA
15.
Diabet Med ; 39(9): e14860, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35477909

RESUMO

AIMS: In the current study we aimed to evaluat T cell phenotypes and metabolic profiles in high-risk individuals who progressed to type 1 diabetes compared to those remaining disease free. METHODS: A Fluorspot assay was used to examine T cell responses to a panel of islet autoantigen peptides in samples obtained 6- and 30-months preceding disease onset and at the same timepoints in non-progressors. RESULTS: We noted a significant increase in the magnitude of the proinflammatory interferon-γ response to proinsulin and insulin peptides in individuals who progressed to type 1 diabetes. In contrast, in the non-progressors, we observed an increase in the regulatory IL-10 response to proinsulin peptides. Furthermore, the T cell responses to the islet peptide panel predisposed towards a proinflammatory interferon-γ bias in the progressors. CONCLUSIONS: Collectively, these data suggest that a proinflammatory T cell response is prevalent in high-risk individuals who progress to type 1 diabetes and can be detected up to 6 months prior to onset of disease. This observation, albeit in a small cohort, can potentially be harnessed in disease staging, particularly in identifying autoantibody-positive individuals transitioning from stage 2 (dysglycemia present and pre-symptomatic) to stage 3 (dysglycemia present and symptomatic). The detection of these different T cell phenotypes in progressors and non-progressors suggests the presence of disease endotypes.


Assuntos
Diabetes Mellitus Tipo 1 , Linfócitos T , Autoanticorpos , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/imunologia , Humanos , Interferon gama/imunologia , Peptídeos , Proinsulina , Linfócitos T/imunologia
16.
J Immunol ; 204(12): 3129-3138, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32404353

RESUMO

We previously reported that costimulation blockade by abatacept limits the decline of ß-cell function and the frequency of circulating CD4+ central memory T cells (TCM) (CD45RO+CD62L+) in new-onset type 1 diabetes. In human subjects receiving placebo, we found a significant association between an increase in CD4+ TCM cells and the decline of ß-cell function. To extend and refine these findings, we examined changes in human CD4+ and CD8+ naive and memory T cell subsets at greater resolution using polychromatic flow and mass cytometry. In the placebo group, we successfully reproduced the original finding of a significant association between TCM and ß-cell function and extended this to other T cell subsets. Furthermore, we show that abatacept treatment significantly alters the frequencies of a majority of CD4+ conventional and regulatory T cell subsets; in general, Ag-naive subsets increase and Ag-experienced subsets decrease, whereas CD8+ T cell subsets are relatively resistant to drug effects, indicating a lesser reliance on CD28-mediated costimulation. Importantly, abatacept uncouples the relationship between changes in T cell subsets and ß-cell function that is a component of the natural history of the disease. Although these data suggest immunological markers for predicting change in ß-cell function in type 1 diabetes, the finding that abatacept blunts this relationship renders the biomarkers nonpredictive for this type of therapy. In sum, our findings point to a novel mechanism of action for this successful immunotherapy that may guide other disease-modifying approaches for type 1 diabetes.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Memória Imunológica/imunologia , Abatacepte/farmacologia , Linfócitos B/efeitos dos fármacos , Biomarcadores/sangue , Antígenos CD28/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Diabetes Mellitus Tipo 1/sangue , Humanos , Memória Imunológica/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
17.
Am J Transplant ; 21(3): 1027-1038, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32865886

RESUMO

Islet transplantation is an effective therapy for life-threatening hypoglycemia, but graft function gradually declines over time in many recipients. We characterized islet-specific T cells in recipients within an islet transplant program favoring alemtuzumab (ATZ) lymphodepleting induction and examined associations with graft function. Fifty-eight recipients were studied: 23 pretransplant and 40 posttransplant (including 5 with pretransplant phenotyping). The proportion with islet-specific T cell responses was not significantly different over time (pre-Tx: 59%; 1-6 m posttransplant: 38%; 7-12 m: 44%; 13-24 m: 47%; and >24 m: 45%). However, phenotype shifted significantly, with IFN-γ-dominated response in the pretransplant group replaced by IL-10-dominated response in the 1-6 m posttransplant group, reverting to predominantly IFN-γ-oriented response in the >24 m group. Clustering analysis of posttransplant responses revealed two main agglomerations, characterized by IFN-γ and IL-10 phenotypes, respectively. IL-10-oriented posttransplant response was associated with relatively low graft function. Recipients within the IL-10+ cluster had a significant decline in C-peptide levels in the period preceding the IL-10 response, but stable graft function following the response. In contrast, an IFN-γ response was associated with subsequently decreased C-peptide. Islet transplantation favoring ATZ induction is associated with an initial altered islet-specific T cell phenotype but reversion toward pretransplant profiles over time. Posttransplant autoreactive T cell phenotype may be a predictor of subsequent graft function.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante de Células-Tronco Hematopoéticas , Transplante das Ilhotas Pancreáticas , Alemtuzumab/uso terapêutico , Sobrevivência de Enxerto , Humanos , Fenótipo , Linfócitos T
18.
Diabetologia ; 63(6): 1186-1198, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32248243

RESUMO

AIMS/HYPOTHESIS: Antigen-specific therapy aims to modify inflammatory T cell responses in type 1 diabetes and restore immune tolerance. One strategy employs GAD65 conjugated to aluminium hydroxide (GAD-alum) to take advantage of the T helper (Th)2-biasing adjuvant properties of alum and thereby regulate pathological Th1 autoimmunity. We explored the cellular and molecular mechanism of GAD-alum action in the setting of a previously reported randomised placebo-controlled clinical trial conducted by Type 1 Diabetes TrialNet. METHODS: In the clinical trial conducted by Type 1 Diabetes TrialNet, participants were immunised with 20 µg GAD-alum (twice or three times) or alum alone and peripheral blood mononuclear cell samples were banked at baseline and post treatment. In the present study, GAD-specific T cell responses were measured in these samples and GAD-specific T cell lines and clones were generated, which were then further characterised. RESULTS: At day 91 post immunisation, we detected GAD-specific IL-13+ CD4 T cell responses significantly more frequently in participants immunised with GAD-alum (71% and 94% treated twice or three times, respectively) compared with those immunised with alum alone (38%; p = 0.003 and p = 0.0002, respectively) accompanied by high secreted levels of IL-13, IL-4 and IL-5, confirming a GAD-specific, GAD-alum-induced Th2 response. Of note, GAD-specific, IL-13+ CD4 T cells observed after immunisation co-secreted IFN-γ, displaying a bifunctional Th1/Th2 phenotype. Single-cell transcriptome analysis identified IL13 and IFNG expression in concert with the canonical Th2 and Th1 transcription factor genes GATA3 and TBX21, respectively. T cell receptor ß-chain (TCRB) CDR3 regions of GAD-specific bifunctional T cells were identified in circulating naive and central memory CD4 T cell pools of non-immunised participants with new-onset type 1 diabetes and healthy individuals, suggesting the potential for bifunctional responses to be generated de novo by GAD-alum immunisation or via expansion from an existing public repertoire. CONCLUSIONS/INTERPRETATION: GAD-alum immunisation activates and propagates GAD-specific CD4 T cells with a distinctive bifunctional phenotype, the functional analysis of which might be important in understanding therapeutic responses.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Imunoterapia/métodos , Células Th1/imunologia , Células Th2/imunologia , Linhagem Celular , Criopreservação , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores de Antígenos de Linfócitos T/metabolismo , Células Th1/metabolismo , Células Th2/metabolismo
19.
J Autoimmun ; 112: 102466, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32414606

RESUMO

The ready availability of human blood makes it the first choice for immuno-monitoring. However, this has been largely confined to static metrics, particularly resting T cell phenotypes. Conversely, dynamic assessments have mostly relied on cell stimulation in vitro which is subject to multiple variables. Here, immunodynamic insights from the peripheral blood are shown to be obtainable by applying a revised approach to cell-cycle analysis. Specifically, refined flow cytometric protocols were employed, assuring the reliable quantification of T cells in the S-G2/M phases of the cell-cycle (collectively termed "T Double S" for T cells in S-phase in Sanguine: in short "TDS" cells). Without protocol refinement, TDS could be either missed, as most of them layed out of the conventional lymphocyte gates, or confused with cell doublets artefactually displaying high DNA-content. To illustrate the nature of TDS cells, and their relationship to different immunodynamic scenarios, we examined them in healthy donors (HD); infectious mononucleosis (IM) patients versus asymptomatic EBV+ carriers; and recently-diagnosed T1D patients. TDS were reproducibly more abundant among CD8+ T cells and a defined subset of T-regulatory CD4+ T cells, and were substantially increased in IM and a subset of T1D patients. Of note, islet antigen-reactive TDS cell frequencies were associated with an aggressive T cell effector phenotype, suggesting that peripheral blood can reflect immune events within tissues in T1D, and possibly in other organ-specific autoimmune diseases. Our results suggest that tracking TDS cells may provide a widely applicable means of gaining insight into ongoing immune response dynamics in a variety of settings, including tissue immunopathologies where the peripheral blood has often not been considered insightful.


Assuntos
Pontos de Checagem do Ciclo Celular/imunologia , Monitorização Imunológica/métodos , Linfócitos T/imunologia , Animais , Citometria de Fluxo/métodos , Humanos , Camundongos , Camundongos Transgênicos
20.
J Immunol ; 200(7): 2263-2279, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29483360

RESUMO

Peptide-MHC (pMHC) multimers, usually used as streptavidin-based tetramers, have transformed the study of Ag-specific T cells by allowing direct detection, phenotyping, and enumeration within polyclonal T cell populations. These reagents are now a standard part of the immunology toolkit and have been used in many thousands of published studies. Unfortunately, the TCR-affinity threshold required for staining with standard pMHC multimer protocols is higher than that required for efficient T cell activation. This discrepancy makes it possible for pMHC multimer staining to miss fully functional T cells, especially where low-affinity TCRs predominate, such as in MHC class II-restricted responses or those directed against self-antigens. Several recent, somewhat alarming, reports indicate that pMHC staining might fail to detect the majority of functional T cells and have prompted suggestions that T cell immunology has become biased toward the type of cells amenable to detection with multimeric pMHC. We use several viral- and tumor-specific pMHC reagents to compare populations of human T cells stained by standard pMHC protocols and optimized protocols that we have developed. Our results confirm that optimized protocols recover greater populations of T cells that include fully functional T cell clonotypes that cannot be stained by regular pMHC-staining protocols. These results highlight the importance of using optimized procedures that include the use of protein kinase inhibitor and Ab cross-linking during staining to maximize the recovery of Ag-specific T cells and serve to further highlight that many previous quantifications of T cell responses with pMHC reagents are likely to have considerably underestimated the size of the relevant populations.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno HLA-A2/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Coloração e Rotulagem/métodos , Citomegalovirus/imunologia , Herpesvirus Humano 4/imunologia , Humanos , Ativação Linfocitária/imunologia , Melanoma/imunologia , Orthomyxoviridae/imunologia , Ligação Proteica/imunologia , Inibidores de Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/imunologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA