Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Microbiol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619026

RESUMO

MucR belongs to a large protein family whose members regulate the expression of virulence and symbiosis genes in α-proteobacteria species. This protein and its homologs were initially studied as classical transcriptional regulators mostly involved in repression of target genes by binding their promoters. Very recent studies have led to the classification of MucR as a new type of Histone-like Nucleoid Structuring (H-NS) protein. Thus this review is an effort to put together a complete and unifying story demonstrating how genetic and biochemical findings on MucR suggested that this protein is not a classical transcriptional regulator, but functions as a novel type of H-NS-like protein, which binds AT-rich regions of genomic DNA and regulates gene expression.

2.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232306

RESUMO

A strict interplay is known to involve copper and zinc in many cellular processes. For this reason, the results of copper's interaction with zinc binding proteins are of great interest. For instance, copper interferences with the DNA-binding activity of zinc finger proteins are associated with the development of a variety of diseases. The biological impact of copper depends on the chemical properties of its two common oxidation states (Cu(I) and Cu(II)). In this framework, following the attention addressed to unveil the effect of metal ion replacement in zinc fingers and in zinc-containing proteins, we explore the effects of the Zn(II) to Cu(I) or Cu(II) replacement in the prokaryotic zinc finger domain. The prokaryotic zinc finger protein Ros, involved in the horizontal transfer of genes from A. tumefaciens to a host plant infected by it, belongs to a family of proteins, namely Ros/MucR, whose members have been recognized in different bacteria symbionts and pathogens of mammals and plants. Interestingly, the amino acids of the coordination sphere are poorly conserved in most of these proteins, although their sequence identity can be very high. In fact, some members of this family of proteins do not bind zinc or any other metal, but assume a 3D structure similar to that of Ros with the residues replacing the zinc ligands, forming a network of hydrogen bonds and hydrophobic interactions that surrogates the Zn-coordinating role. These peculiar features of the Ros ZF domain prompted us to study the metal ion replacement with ions that have different electronic configuration and ionic radius. The protein was intensely studied as a perfectly suited model of a metal-binding protein to study the effects of the metal ion replacement; it appeared to tolerate the Zn to Cd substitution, but not the replacement of the wildtype metal by Ni(II), Pb(II) and Hg(II). The structural characterization reported here gives a high-resolution description of the interaction of copper with Ros, demonstrating that copper, in both oxidation states, binds the protein, but the replacement does not give rise to a functional domain.


Assuntos
Mercúrio , Zinco , Aminoácidos , Cádmio , Cobre/química , DNA/metabolismo , Íons , Chumbo , Proteínas , Zinco/metabolismo , Dedos de Zinco
3.
Molecules ; 27(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35458581

RESUMO

Here, we propose Ageritin, the prototype of the ribotoxin-like protein family, as an adjuvant treatment to control the growth of NULU and ZAR, two primary human glioblastoma cell lines, which exhibit a pharmacoresistance phenotype. Ageritin is able to inhibit NULU and ZAR growth with an IC50 of 0.53 ± 0.29 µM and 0.42 ± 0.49 µM, respectively. In this study, Ageritin treatment highlighted a macroscopic genotoxic response through the formation of micronuclei, which represents the morphological manifestation of genomic chaos induced by this toxin. DNA damage was not associated with either the deregulation of DNA repair enzymes (i.e., ATM and DNA-PK), as demonstrated by quantitative PCR, or reactive oxygen species. Indeed, the pretreatment of the most responsive cell line ZAR with the ROS scavenger N-acetylcysteine (NAC) did not follow the reverse cytotoxic effect of Ageritin, suggesting that this protein is not involved in cellular oxidative stress. Vice versa, Ageritin pretreatment strongly enhanced the sensitivity to temozolomide (TMZ) and inhibited MGMT protein expression, restoring the sensitivity to temozolomide. Overall, Ageritin could be considered as a possible innovative glioblastoma treatment, directly damaging DNA and downregulating the MGMT DNA repair protein. Finally, we verified the proteolysis susceptibility of Ageritin using an in vitro digestion system, and considered the future perspective use of this toxin as a bioconjugate in biomedicine.


Assuntos
Agaricales , Glioblastoma , Toxinas Biológicas , Antineoplásicos Alquilantes , Linhagem Celular Tumoral , Metilases de Modificação do DNA , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Humanos , Ribonucleases , Temozolomida/farmacologia
4.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998313

RESUMO

The edible mushroom Agrocybe aegerita produces a ribotoxin-like protein known as Ageritin. In this work, the gene encoding Ageritin was characterized by sequence analysis. It contains several typical features of fungal genes such as three short introns (60, 55 and 69 bp) located at the 5' region of the coding sequence and typical splice junctions. This sequence codes for a precursor of 156 amino acids (~17-kDa) containing an additional N-terminal peptide of 21 amino acid residues, absent in the purified toxin (135 amino acid residues; ~15-kDa). The presence of 17-kDa and 15-kDa forms was investigated by Western blot in specific parts of fruiting body and in mycelia of A. aegerita. Data show that the 15-kDa Ageritin is the only form retrieved in the fruiting body and the principal form in mycelium. The immunolocalization by confocal laser scanning microscopy and transmission electron microscopy proves that Ageritin has vacuolar localization in hyphae. Coupling these data with a bioinformatics approach, we suggest that the N-terminal peptide of Ageritin (not found in the purified toxin) is a new signal peptide in fungi involved in intracellular routing from endoplasmic reticulum to vacuole, necessary for self-defense of A. aegerita ribosomes from Ageritin toxicity.


Assuntos
Agrocybe/genética , Citotoxinas/genética , Carpóforos/metabolismo , Proteínas Fúngicas/genética , Micélio/metabolismo , Ribonucleases/genética , Agrocybe/metabolismo , Agrocybe/ultraestrutura , Sequência de Aminoácidos , Biologia Computacional , Citotoxinas/biossíntese , Citotoxinas/isolamento & purificação , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Éxons , Carpóforos/ultraestrutura , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/isolamento & purificação , Expressão Gênica , Íntrons , Micélio/ultraestrutura , Fases de Leitura Aberta , Sinais Direcionadores de Proteínas/genética , Transporte Proteico , Ribonucleases/biossíntese , Ribonucleases/isolamento & purificação , Ribossomos/genética , Ribossomos/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Vacúolos/metabolismo , Vacúolos/ultraestrutura
5.
Inorg Chem ; 58(2): 1067-1080, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30596504

RESUMO

Zinc ion binding is a principal event in the achievement of the correct fold in classical zinc finger domains since the motif is largely unfolded in the absence of metal. In the case of a prokaryotic zinc finger, the larger ßßßαα domain contributes to the folding mechanism with a larger hydrophobic core. For these reasons, following the great amount of attention devoted to unveiling the effect of xenobiotic metal ion replacement in zinc fingers and in zinc-containing proteins in general, the prokaryotic zinc finger domain appears to be an interesting model for studying metal ion interaction with metalloproteins. Here, we explore the binding of Ni(II), Hg(II), and Pb(II) to Ros87, the DNA binding domain of the prokaryotic zinc finger protein Ros. We measured Ros87-metal ion dissociation constants and monitored the effects on the structure and function of the domain. Interestingly, we found that the protein folds in the presence of Ni(II) with important structural perturbations, while in the presence of Pb(II) and Hg(II) it does not appear to be significantly folded. Accordingly, an overall strong reduction in the DNA binding capability is observed for all of the examined proteins. Our data integrate and complement the information collected in the past few years concerning the functional and structural effects of metal ion substitution in classical zinc fingers in order to contribute to a better comprehension of the toxicity of these metals in biological systems.


Assuntos
Chumbo/química , Mercúrio/química , Metaloproteínas/química , Níquel/química , Sítios de Ligação , Modelos Moleculares , Dedos de Zinco
6.
Mol Cell ; 44(3): 361-72, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22055183

RESUMO

The maintenance of H3K9 and DNA methylation at imprinting control regions (ICRs) during early embryogenesis is key to the regulation of imprinted genes. Here, we reveal that ZFP57, its cofactor KAP1, and associated effectors bind selectively to the H3K9me3-bearing, DNA-methylated allele of ICRs in ES cells. KAP1 deletion induces a loss of heterochromatin marks at ICRs, whereas deleting ZFP57 or DNMTs leads to ICR DNA demethylation. Accordingly, we find that ZFP57 and KAP1 associated with DNMTs and hemimethylated DNA-binding NP95. Finally, we identify the methylated TGCCGC hexanucleotide as the motif that is recognized by ZFP57 in all ICRs and in several tens of additional loci, several of which are at least ZFP57-dependently methylated in ES cells. These results significantly advance our understanding of imprinting and suggest a general mechanism for the protection of specific loci against the wave of DNA demethylation that affects the mammalian genome during early embryogenesis.


Assuntos
Montagem e Desmontagem da Cromatina , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Proteínas Nucleares/metabolismo , Motivos de Nucleotídeos , Proteínas Repressoras/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Proteínas Estimuladoras de Ligação a CCAAT , Linhagem Celular , Proteínas Cromossômicas não Histona/metabolismo , Metilases de Modificação do DNA/metabolismo , Técnicas de Inativação de Genes , Histona-Lisina N-Metiltransferase , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteína 28 com Motivo Tripartido , Ubiquitina-Proteína Ligases
7.
Nucleic Acids Res ; 44(3): 1118-32, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26481358

RESUMO

Imprinting Control Regions (ICRs) need to maintain their parental allele-specific DNA methylation during early embryogenesis despite genome-wide demethylation and subsequent de novo methylation. ZFP57 and KAP1 are both required for maintaining the repressive DNA methylation and H3-lysine-9-trimethylation (H3K9me3) at ICRs. In vitro, ZFP57 binds a specific hexanucleotide motif that is enriched at its genomic binding sites. We now demonstrate in mouse embryonic stem cells (ESCs) that SNPs disrupting closely-spaced hexanucleotide motifs are associated with lack of ZFP57 binding and H3K9me3 enrichment. Through a transgenic approach in mouse ESCs, we further demonstrate that an ICR fragment containing three ZFP57 motif sequences recapitulates the original methylated or unmethylated status when integrated into the genome at an ectopic position. Mutation of Zfp57 or the hexanucleotide motifs led to loss of ZFP57 binding and DNA methylation of the transgene. Finally, we identified a sequence variant of the hexanucleotide motif that interacts with ZFP57 both in vivo and in vitro. The presence of multiple and closely located copies of ZFP57 motif variants emerges as a distinct characteristic that is required for the faithful maintenance of repressive epigenetic marks at ICRs and other ZFP57 binding sites.


Assuntos
Metilação de DNA , Impressão Genômica , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Repressoras/genética , Alelos , Animais , Sequência de Bases , Linhagem Celular , Imunoprecipitação da Cromatina , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Motivos de Nucleotídeos/genética , Polimorfismo de Nucleotídeo Único , Ligação Proteica/genética , Proteínas Repressoras/metabolismo , Proteína 28 com Motivo Tripartido
8.
Chemistry ; 22(2): 681-93, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26548575

RESUMO

The critical role of integrins in tumor progression and metastasis has stimulated intense efforts to identify pharmacological agents that can modulate integrin function. In recent years, αv ß3 and αv ß5 integrin antagonists were demonstrated to be effective in blocking tumor progression. RGDechi-hCit, a chimeric peptide containing a cyclic RGD motif linked to an echistatin C-terminal fragment, is able to recognize selectively αv ß3 integrin both in vitro and in vivo. High-resolution molecular details of the selective αv ß3 recognition of the peptide are certainly required, nonetheless RGDechi-hCit internalization limited the use of classical in cell NMR experiments. To overcome such limitations, we used WM266 isolated cellular membranes to accomplish a detailed NMR interaction study that, combined with a computational analysis, provides significant structural insights into αv ß3 molecular recognition by RGDechi-hCit. Remarkably, on the basis of the identified molecular determinants, we design a RGDechi-hCit mutant that is selective for αv ß5 integrin.


Assuntos
Membrana Celular/química , Integrina alfaVbeta3/química , Espectroscopia de Ressonância Magnética , Oligopeptídeos/química , Peptídeos/química , Receptores de Vitronectina/química , Membrana Celular/metabolismo , Computadores Moleculares , Integrina alfaVbeta3/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Peptídeos/metabolismo , Receptores de Vitronectina/metabolismo
9.
Mol Biol Evol ; 30(7): 1504-13, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23576569

RESUMO

The exact evolutionary origin of the zinc finger (ZF) domain is unknown, as it is still not clear from which organisms it was first derived. However, the unique features of the ZF domains have made it very easy for evolution to tinker with them in a number of different manners, including their combination, variation of their number by unequal crossing-over or tandem duplication and tuning of their affinity for specific DNA sequence motifs through point substitutions. Classical Cys2His2 ZF domains as structurally autonomous motifs arranged in multiple copies are known only in eukaryotes. Nonetheless, a single prokaryotic Cys2His2 ZF domain has been identified in the transcriptional regulator Ros from Agrobacterium tumefaciens and recently characterized. The present work focuses on the evolution of the classical ZF domains with the goal of trying to determine whether eukaryotic ZFs have evolved from the prokaryotic Ros-like proteins. Our results, based on computational and experimental data, indicate that a single insertion of three amino acids in the short loop that separates the ß-sheet from the α-helix of the Ros protein is sufficient to induce a structural transition from a Ros like to an eukaryotic-ZF like structure. This observation provides evidence for a structurally plausible and parsimonious scenario of fold evolution, giving a structural basis to the hypothesis of a horizontal gene transfer (HGT) from bacteria to eukaryotes.


Assuntos
Agrobacterium tumefaciens/química , Proteínas de Bactérias/química , Evolução Molecular , Dedos de Zinco , Agrobacterium tumefaciens/genética , Sequência de Aminoácidos , Bactérias/química , Bactérias/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Transferência Genética Horizontal , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
10.
J Am Chem Soc ; 135(13): 5220-8, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23484956

RESUMO

In the funneled landscape, proteins fold to their native states through a stochastic process in which the free energy decreases spontaneously and unfolded, transition, native, and possible intermediate states correspond to local minima or saddle points. Atomic description of the folding pathway appears therefore to be essential for a deep comprehension of the folding mechanism. In metallo-proteins, characterization of the folding pathways becomes even more complex, and therefore, despite their fundamental role in critical biological processes, little is known about their folding and assembly. The study of the mechanisms through which a cofactor influences the protein folding/unfolding reaction has been the rationale of the present study aimed at contributing to the search for cofactors' general roles in protein folding reactions. In particular, we have investigated the folding pathway of two homologous proteins, Ros87, which contains a prokaryotic zinc finger domain, and Ml452-151, lacking the zinc ion. Using a combination of CD, DSC and NMR techniques, we determined the thermodynamics and the structural features, at an atomic level, of the thermal unfolding of Ros87 and compared them to the behavior of Ml452-151. Our results, also corroborated by NMR (1)H/(2)H exchange measurements, show that the presence of the structural Zn(II) in Ros87 implies a switch from the Ml452-151 fully cooperative to a two-step unfolding process in which the intermediate converts to the native state through a downhill barrierless transition. This observation, which has never been reported for any metal ion so far, may have a significant role in the understanding of the protein misfolding associated with the presence of metal ions, as observed in neurodegenerative diseases.


Assuntos
Proteínas/química , Zinco/química , Calorimetria , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dobramento de Proteína
11.
Toxins (Basel) ; 15(1)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36668877

RESUMO

Cetuximab is a monoclonal antibody blocking the epidermal growth factor receptor (EGFR) in metastatic colorectal cancer (mCRC). However, cetuximab treatment has no clinical benefits in patients affected by mCRC with KRAS mutation or in the presence of constitutive activation of signalling pathways acting downstream of the EGFR. The aim of this study was to improve cetuximab's therapeutic action by conjugating cetuximab with the type 1 ribosome inactivating protein (RIP) quinoin isolated from quinoa seeds. A chemical conjugation strategy based on the use of heterobifunctional reagent succinimidyl 3-(2-pyridyldithio)propionate (SPDP) was applied to obtain the antibody-type 1 RIP chimeric immunoconjugate. The immunotoxin was then purified by chromatographic technique, and its enzymatic action was evaluated compared to quinoin alone. Functional assays were performed to test the cytotoxic action of the quinoin cetuximab immunoconjugate against the cetuximab-resistant GEO-CR cells. The novel quinoin cetuximab immunoconjugate showed a significant dose-dependent cytotoxicity towards GEO-CR cells, achieving IC50 values of 27.7 nM (~5.0 µg/mL) at 72 h compared to cetuximab (IC50 = 176.7 nM) or quinoin (IC50 = 149.3 nM) alone assayed in equimolar amounts. These results support the therapeutic potential of quinoin cetuximab immunoconjugate for the EGFR targeted therapy, providing a promising candidate for further development towards clinical use in the treatment of cetuximab-resistant metastatic colorectal cancer.


Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Colorretais , Imunotoxinas , Humanos , Anticorpos Monoclonais Humanizados , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cetuximab/farmacologia , Cetuximab/genética , Cetuximab/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Receptores ErbB/metabolismo , Imunotoxinas/uso terapêutico , Mutação , Saporinas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos
12.
Cell Chem Biol ; 30(12): 1652-1665.e6, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38065101

RESUMO

The TRF2 shelterin component is an essential regulator of telomere homeostasis and genomic stability. Mutations in the TRF2TRFH domain physically impair t-loop formation and prevent the recruitment of several factors that promote efficient telomere replication, causing telomeric DNA damage. Here, we design, synthesize, and biologically test covalent cyclic peptides that irreversibly target the TRF2TRFH domain. We identify APOD53 as our most promising compound, as it consistently induces a telomeric DNA damage response in cancer cell lines. APOD53 forms a covalent adduct with a reactive cysteine residue present in the TRF2TRFH domain and induces phenotypes consistent with TRF2TRFH domain mutants. These include induction of a telomeric DNA damage response, increased telomeric replication stress, and impaired recruitment of RTEL1 and SLX4 to telomeres. We demonstrate that APOD53 impairs cancer cell growth and find that co-treatment with APOD53 can exacerbate telomere replication stress caused by the G4 stabilizer RHPS4 and low dose aphidicolin (APH).


Assuntos
Peptídeos Cíclicos , Proteína 2 de Ligação a Repetições Teloméricas , Dano ao DNA , Peptídeos Cíclicos/farmacologia , Telômero , Proteína 2 de Ligação a Repetições Teloméricas/antagonistas & inibidores , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/genética , Domínios Proteicos , Linhagem Celular Tumoral
13.
Proc Natl Acad Sci U S A ; 106(17): 6933-8, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19369210

RESUMO

The recent characterization of the prokaryotic Cys(2)His(2) zinc-finger domain, identified in Ros protein from Agrobacterium tumefaciens, has demonstrated that, although possessing a similar zinc coordination sphere, this domain is structurally very different from its eukaryotic counterpart. A search in the databases has identified approximately 300 homologues with a high sequence identity to the Ros protein, including the amino acids that form the extensive hydrophobic core in Ros. Surprisingly, the Cys(2)His(2) zinc coordination sphere is generally poorly conserved in the Ros homologues, raising the question of whether the zinc ion is always preserved in these proteins. Here, we present a functional and structural study of a point mutant of Ros protein, Ros(56-142)C82D, in which the second coordinating cysteine is replaced by an aspartate, 5 previously-uncharacterized representative Ros homologues from Mesorhizobium loti, and 2 mutants of the homologues. Our results indicate that the prokaryotic zinc-finger domain, which in Ros protein tetrahedrally coordinates Zn(II) through the typical Cys(2)His(2) coordination, in Ros homologues can either exploit a CysAspHis(2) coordination sphere, previously never described in DNA binding zinc finger domains to our knowledge, or lose the metal, while still preserving the DNA-binding activity. We demonstrate that this class of prokaryotic zinc-finger domains is structurally very adaptable, and surprisingly single mutations can transform a zinc-binding domain into a nonzinc-binding domain and vice versa, without affecting the DNA-binding ability. In light of our findings an evolutionary link between the prokaryotic and eukaryotic zinc-finger domains, based on bacteria-to-eukaryota horizontal gene transfer, is discussed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dedos de Zinco , Zinco/química , Zinco/metabolismo , Alphaproteobacteria/química , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cátions , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
14.
Toxins (Basel) ; 14(6)2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35737065

RESUMO

rRNA N-glycosylases (EC 3.2.2.22) remove a specific adenine (A4324, rat 28S rRNA) in the sarcin ricin loop (SRL) involved into ribosome interaction with elongation factors, causing the inhibition of translation, for which they are known as plant 'ribosome inactivating proteins' (RIPs). However, protein synthesis inactivation could be the result of other enzymes, which often have rRNA as the target. In this scenario, Endo's assay is the most used method to detect the enzymes that are able to hydrolyze a phosphodiester bond or cleave a single N-glycosidic bond (rRNA N-glycosylases). Indeed, the detection of a diagnostic fragment from rRNA after enzymatic action, with or without acid aniline, allows one to discriminate between the N-glycosylases or hydrolases, which release the ß-fragment after acid aniline treatment or α-fragment without acid aniline treatment, respectively. This assay is of great importance in the mushroom kingdom, considering the presence of enzymes that are able to hydrolyze phosphodiester bonds (e.g., ribonucleases, ribotoxins and ribotoxin-like proteins) or to remove a specific adenine (rRNA N-glycosylases). Thus, here we used the ß-fragment experimentally detected by Endo's assay as a hallmark to revise the literature available on enzymes from mushrooms and other fungi, whose action consists of protein biosynthesis inhibition.


Assuntos
Agaricales , Ricina , Adenina/metabolismo , Agaricales/metabolismo , Compostos de Anilina , Animais , Proteínas de Plantas/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , RNA Ribossômico/análise , RNA Ribossômico/metabolismo , Ratos , Proteínas Inativadoras de Ribossomos/metabolismo , Ribossomos/metabolismo , Ricina/metabolismo
15.
Toxins (Basel) ; 14(2)2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-35202112

RESUMO

Here, we report the current status of the bioactive peptides isolated and characterized from mushrooms during the last 20 years, considering 'peptide' a succession from to 2 to 100 amino acid residues. According to this accepted biochemical definition, we adopt ~10 kDa as the upper limit of molecular weight for a peptide. In light of this, a careful revision of data reported in the literature was carried out. The search revealed that in the works describing the characterization of bioactive peptides from mushrooms, not all the peptides have been correctly classified according to their molecular weight, considering that some fungal proteins (>10 kDa MW) have been improperly classified as 'peptides'. Moreover, the biological action of each of these peptides, the principles of their isolation as well as the source/mushroom species were summarized. Finally, this review highlighted that these peptides possess antihypertensive, antifungal, antibiotic and antimicrobial, anticancer, antiviral, antioxidant and ACE inhibitory properties.


Assuntos
Agaricales/química , Proteínas Fúngicas/química , Peso Molecular
16.
Food Chem ; 396: 133655, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35868286

RESUMO

Ribotoxin-like proteins (RL-Ps) represent a novel specific ribonuclease family found in edible mushrooms and are able to inhibit protein synthesis. Here, we report the characterization and cytotoxic effects of four novel RL-Ps, named eryngitins, isolated from fruiting bodies of the king oyster mushroom (Pleurotus eryngii). These proteins induced formation of α-fragment from rabbit ribosomes, characteristic of their enzymatic action. The two 15 kDa eryngitins (3 and 4) are considerably more thermostable than the 21 kDa ones (1 and 2), however their overall structural features, as determined by far-UV CD spectrometry, are similar. Complete in vitro digestibility by pepsin-trypsin, and lack of cytotoxicity towards human HUVEC cells suggest low toxicity of eryngitins, if ingested. However, eryngitins exhibit cytotoxic action against insect Sf9 cells, suggesting their possible use in biotechnological applications as bioinsecticides. This cytotoxicity was not enhanced in the presence of cytolytic protein complexes based on aegerolysin proteins from Pleurotus mushrooms.


Assuntos
Agaricales , Antineoplásicos , Pleurotus , Agaricales/química , Animais , Antineoplásicos/farmacologia , Humanos , Pleurotus/química , Coelhos , Ribonucleases/química , Ribonucleases/metabolismo , Ribonucleases/farmacologia
17.
Toxins (Basel) ; 13(10)2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34678977

RESUMO

Ribosome-inactivating proteins (RIPs) are found in several edible plants and are well characterized. Many studies highlight their use in cancer therapy, alone or as immunoconjugates, linked to monoclonal antibodies directed against target cancer cells. In this context, we investigate the cytotoxicity of quinoin, a novel type 1 RIP from quinoa seeds, on human continuous and primary glioblastoma cell lines. The cytotoxic effect of quinoin was assayed on human continuous glioblastoma U87Mg cells. Moreover, considering that common conventional glioblastoma multiforme (GBM) cell lines are genetically different from the tumors from which they derive, the cytotoxicity of quinoin was subsequently tested towards primary cells NULU and ZAR (two cell lines established from patients' gliomas), also in combination with the chemotherapeutic agent temozolomide (TMZ), currently used in glioblastoma treatment. The present study demonstrated that quinoin (2.5 and 5.0 nM) strongly reduced glioblastoma cells' growth. The mechanisms responsible for the inhibitory action of quinoin are different in the tested primary cell lines, reproducing the heterogeneous response of glioblastoma cells. Interestingly, primary cells treated with quinoin in combination with TMZ were more sensitive to the treatment. Overall, our data highlight that quinoin could represent a novel tool for glioblastoma therapy and a possible adjuvant for the treatment of the disease in combination with TMZ, alone or as possible immunoconjugates/nanoconstructs.


Assuntos
Glioblastoma/tratamento farmacológico , Proteínas de Plantas/farmacologia , Proteínas Inativadoras de Ribossomos/farmacologia , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chenopodium quinoa/enzimologia , Humanos , Sementes/enzimologia , Temozolomida/farmacologia
18.
Food Chem ; 342: 128337, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33077288

RESUMO

This study investigates on the presence of toxic proteins in quinoa seeds. To this aim, a plethora of biochemical approaches were adopted for the purification and characterization of quinoin, a type 1 ribosome-inactivating protein (RIP) contained in quinoa seeds. We determined its melting temperature (68.2 ± 0.6 °C) and thermostability (loss of activity after 10-min incubation at 70 °C). Considering that quinoa seeds are used as a food, we found that quinoin is cytotoxic against BJ-5ta (human fibroblasts) and HaCaT (human keratinocytes) in a dose- and time-dependent manner. Moreover, in an in vitro digestive pepsin-trypsin treatment, 30% of quinoin is resistant to enzymatic cleavage. This toxin was found in seeds (0.23 mg/g of seeds) and in sprouted seeds obtained after 24-h (0.12 mg/g of sprout) and 48-h (0.09 mg/g of sprout). We suggest a thermal treatment of quinoa seeds before consumption in order to inactivate the toxin, particularly in sprouts, generally consumed raw.


Assuntos
Chenopodium quinoa/enzimologia , Dieta , Proteínas Inativadoras de Ribossomos Tipo 1/análise , Humanos , Sementes/enzimologia
19.
Food Chem ; 359: 129931, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940474

RESUMO

Porcini are edible mushrooms widely used in cooking due to their extraordinary taste. Despite this, cases of food poisoning have been reported in the recent literature also for ingestion of porcini. Here, we report the isolation from Boletus edulis fruiting bodies of two novel ribotoxin-like proteins (RL-Ps), enzymes already studied in other organisms for their toxicity. These RL-Ps, named Edulitin 1 (16-kDa) and Edulitin 2 (14-kDa), show peculiar structural and enzymatic differences, which probably reflect their different bio-activities and a dose/time dependent toxicity (Edulitin 2) on normal and tumoral human cells. Particularly interesting is the resistance to proteolysis of Edulitin 2, for which it was observed that its toxicity was abolished only after heat treatment (90 °C) followed by proteolysis. As mushroom poisoning is a serious food safety issue, data here presented confirm the existence of toxins also in porcini and the importance of a proper cooking before their consumption.


Assuntos
Basidiomycota/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Toxinas Biológicas/toxicidade , Proteínas Fúngicas/toxicidade , Humanos , Conformação Proteica
20.
Met Ions Life Sci ; 202020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32851833

RESUMO

Zinc finger (ZF) domains, that represent the majority of the DNA-binding motifs in eukaryotes, are involved in several processes ranging from RNA packaging to transcriptional activation, regulation of apoptosis, protein folding and assembly, and lipid binding. While their amino acid composition varies from one domain to the other, a shared feature is the coordination of a zinc ion, with a structural role, by a different combination of cysteines and histidines. The classical zinc finger domain (also called Cys2His2) that represents the most common class, uses two cysteines and two histidines to coordinate the metal ion, and forms a compact ßßα architecture consisting in a ß-sheet and an α-helix. GAG-knuckle resembles the classical ZF, treble clef and zinc ribbon are also well represented in the human genome. Zinc fingers are also present in prokaryotes. The first prokaryotic ZF domain found in the transcriptional regulator Ros protein was identified in Agrobacterium tumefaciens. It shows a Cys2His2 metal ion coordination sphere and folds in a domain significantly larger than its eukaryotic counterpart arranged in a ßßßαα topology. Interestingly, this domain does not strictly require the metal ion coordination to achieve the functional fold. Here, we report what is known on the main classes of eukaryotic and prokarotic ZFs, focusing our attention to the role of the metal ion, the folding mechanism, and the DNA binding. The hypothesis of a horizontal gene transfer from prokaryotes to eukaryotes is also discussed.


Assuntos
Dedos de Zinco , Agrobacterium tumefaciens , Sequência de Aminoácidos , Humanos , Proteínas , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA