Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833883

RESUMO

Ribotoxin-like proteins (RL-Ps) are specific ribonucleases found in mushrooms that are able to cleave a single phosphodiester bond located in the sarcin-ricin loop (SRL) of the large rRNA. The cleaved SRL interacts differently with some ribosomal proteins (P-stalk). This action blocks protein synthesis because the damaged ribosomes are unable to interact with elongation factors. Here, the amino acid sequences of eryngitin 3 and 4, RL-Ps isolated from Pleurotus eryngii fruiting bodies, were determined to (i) obtain structural information on this specific ribonuclease family from edible mushrooms and (ii) explore the structural determinants which justify their different biological and antipathogenic activities. Indeed, eryngitin 3 exhibited higher toxicity with respect to eryngitin 4 against tumoral cell lines and model fungi. Structurally, eryngitin 3 and 4 consist of 132 amino acids, most of them identical and exhibiting a single free cysteinyl residue. The amino acidic differences between the two toxins are (i) an additional phenylalanyl residue at the N-terminus of eryngitin 3, not retrieved in eryngitin 4, and (ii) an additional arginyl residue at the C-terminus of eryngitin 4, not retrieved in eryngitin 3. The 3D models of eryngitins show slight differences at the N- and C-terminal regions. In particular, the positive electrostatic surface at the C-terminal of eryngitin 4 is due to the additional arginyl residue not retrieved in eryngitin 3. This additional positive charge could interfere with the binding to the SRL (substrate) or with some ribosomal proteins (P-stalk structure) during substrate recognition.


Assuntos
Agaricales , Ascomicetos , Pleurotus , Ricina , Endorribonucleases/metabolismo , Proteínas Fúngicas/metabolismo , Pleurotus/metabolismo , Ribonucleases/química , Agaricales/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/análise , Ricina/metabolismo , Ascomicetos/metabolismo , Carpóforos/química
2.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834166

RESUMO

Proteins of the MucR/Ros family play a crucial role in bacterial infection or symbiosis with eukaryotic hosts. MucR from Sinorhizobium meliloti plays a regulatory role in establishing symbiosis with the host plant, both dependent and independent of Quorum Sensing. Here, we report the first characterization of MucR isolated from Sinorhizobium meliloti by mass spectrometry and demonstrate that this protein forms higher-order oligomers in its native condition of expression by SEC-MALS. We show that MucR purified from Sinorhizobium meliloti can bind DNA and recognize the region upstream of the ndvA gene in EMSA, revealing that this gene is a direct target of MucR. Although MucR DNA binding activity was already described, a detailed characterization of Sinorhizobium meliloti DNA targets has never been reported. We, thus, analyze sequences recognized by MucR in the rem gene promoter, showing that this protein recognizes AT-rich sequences and does not require a consensus sequence to bind DNA. Furthermore, we investigate the dependence of MucR DNA binding on the length of DNA targets. Taken together, our studies establish MucR from Sinorhizobium meliloti as a member of a new family of Histone-like Nucleoid Structuring (H-NS) proteins, thus explaining the multifaceted role of this protein in many species of alpha-proteobacteria.


Assuntos
Proteínas Repressoras , Sinorhizobium meliloti , Proteínas Repressoras/genética , Sinorhizobium meliloti/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/metabolismo , DNA/genética , DNA/metabolismo , Simbiose , Regulação Bacteriana da Expressão Gênica
3.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409070

RESUMO

An unprecedented effort to tackle the ongoing COVID-19 pandemic has characterized the activity of the global scientific community over the last two years. Hundreds of published studies have focused on the comprehension of the immune response to the virus and on the definition of the functional role of SARS-CoV-2 proteins. Proteins containing zinc fingers, both belonging to SARS-CoV-2 or to the host, play critical roles in COVID-19 participating in antiviral defenses and regulation of viral life cycle. Differentially expressed zinc finger proteins and their distinct activities could thus be important in determining the severity of the disease and represent important targets for drug development. Therefore, we here review the mechanisms of action of host and viral zinc finger proteins in COVID-19 as a contribution to the comprehension of the disease and also highlight strategies for therapeutic developments.


Assuntos
COVID-19 , Antivirais/farmacologia , Humanos , Pandemias , SARS-CoV-2 , Zinco
4.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054864

RESUMO

Penicillium digitatum is a widespread pathogen responsible for the postharvest decay of citrus, one of the most economically important crops worldwide. Currently, chemical fungicides are still the main strategy to control the green mould disease caused by the fungus. However, the increasing selection and proliferation of fungicide-resistant strains require more efforts to explore new alternatives acting via new or unexplored mechanisms for postharvest disease management. To date, several non-chemical compounds have been investigated for the control of fungal pathogens. In this scenario, understanding the molecular determinants underlying P. digitatum's response to biological and chemical antifungals may help in the development of safer and more effective non-chemical control methods. In this work, a proteomic approach based on isobaric labelling and a nanoLC tandem mass spectrometry approach was used to investigate molecular changes associated with P. digitatum's response to treatments with α-sarcin and beetin 27 (BE27), two proteins endowed with antifungal activity. The outcomes of treatments with these biological agents were then compared with those triggered by the commonly used chemical fungicide thiabendazole (TBZ). Our results showed that differentially expressed proteins mainly include cell wall-degrading enzymes, proteins involved in stress response, antioxidant and detoxification mechanisms and metabolic processes such as thiamine biosynthesis. Interestingly, specific modulations in response to protein toxins treatments were observed for a subset of proteins. Deciphering the inhibitory mechanisms of biofungicides and chemical compounds, together with understanding their effects on the fungal physiology, will provide a new direction for improving the efficacy of novel antifungal formulations and developing new control strategies.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Penicillium/efeitos dos fármacos , Espectrometria de Massas em Tandem , Antioxidantes/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Cromatografia Líquida , Endorribonucleases/farmacologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacologia , Testes de Sensibilidade Microbiana , Penicillium/crescimento & desenvolvimento , Proteômica , Tiabendazol/farmacologia
5.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555507

RESUMO

Pharma-grade extractive chondroitin sulfate (CS) is widely used for osteoarthritis (OA) treatment. Recently, unsulfated biofermentative chondroitin (BC) proved positive effects in OA in vitro model. This study, based on primary pathological human synoviocytes, aimed to analyze, by a multiplex assay, a panel of OA-related biomarkers in response to short-term treatments with bovine (CSb), pig (CSp) and fish (CSf) chondroitins, in comparison to BC. As expected, all samples had anti-inflammatory properties, however CSb, CSf and especially BC affected more cytokines and chemokines. Based on these results and molecular weight similarity, CSf and BC were selected to further explore the synoviocytes' response. In fact, Western blot analyses showed CSf and BC were comparable, downregulating OA-related biomarkers such as the proteins mTOR, NF-kB, PTX-3 and COMP-2. Proteomic analyses, performed by applying a nano-LC-MS/MS TMT isobaric labelling-based approach, displayed the modulation of both common and distinct molecules to chondroitin treatments. Thus, CSf and BC modulated the biological mediators involved in the inflammation cascade, matrix degradation/remodeling, glycosaminoglycans' synthesis and cellular homeostasis. This study helps in shedding light on different molecular mechanisms related to OA disease that may be potentially affected not only by animal-source chondroitin sulfate but also by unsulfated biofermentative chondroitin.


Assuntos
Osteoartrite , Sinoviócitos , Humanos , Animais , Bovinos , Suínos , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/metabolismo , Sinoviócitos/metabolismo , Sulfatos , Proteômica , Espectrometria de Massas em Tandem , Osteoartrite/metabolismo , Biomarcadores
6.
J Biol Chem ; 294(3): 861-873, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30459231

RESUMO

The highly conserved zinc finger CCCTC-binding factor (CTCF) regulates genomic imprinting and gene expression by acting as a transcriptional activator or repressor of promoters and insulator of enhancers. The multiple functions of CTCF are accomplished by co-association with other protein partners and are dependent on genomic context and tissue specificity. Despite the critical role of CTCF in the organization of genome structure, to date, only a subset of CTCF interaction partners have been identified. Here we present a large-scale identification of CTCF-binding partners using affinity purification and high-resolution LC-MS/MS analysis. In addition to functional enrichment of specific protein families such as the ribosomal proteins and the DEAD box helicases, we identified novel high-confidence CTCF interactors that provide a still unexplored biochemical context for CTCF's multiple functions. One of the newly validated CTCF interactors is BRG1, the major ATPase subunit of the chromatin remodeling complex SWI/SNF, establishing a relationship between two master regulators of genome organization. This work significantly expands the current knowledge of the human CTCF interactome and represents an important resource to direct future studies aimed at uncovering molecular mechanisms modulating CTCF pleiotropic functions throughout the genome.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Fator de Ligação a CCCTC/genética , Linhagem Celular Tumoral , DNA Helicases/genética , Humanos , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
7.
Int J Mol Sci ; 21(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466468

RESUMO

Symptomatic slow-acting drugs (SYSADOA) are increasingly used as effective therapies for osteoarthritis, representing an attractive alternative to analgesics or non-steroidal anti-inflammatory drugs to relieve disease symptoms. Pharmaceutical preparations of chondroitin sulfate, derived from animal sources, alone or in combination with glucosamine sulfate, are widely recognized for their beneficial effect on osteoarthritis treatment. A growing interest has also been devoted to understanding the molecular mechanisms modulated by SYSADOA using -omic strategies, most of which rely on chondrocytes as a model system. In this work, by using an integrated strategy based on unbiased proteomics and targeted cytokine profiling by a multiplexed protein array, we identified differences in the secretomes of human osteoarthritic synoviocytes in response to biotechnological unsulfated, and marine sulfated chondroitins treatments. The combined strategy allowed the identification of candidate proteins showing both common and distinct regulation responses to the two treatments of chondroitins. These molecules, mainly belonging to ECM proteins, enzymes, enzymatic inhibitors and cytokines, are potentially correlated to treatment outcomes. Overall, the present results provide an integrated overview of protein changes in human osteoarthritic synoviocytes secretome associated to different chondroitin treatments, thus improving current knowledge of the biochemical effects driven by these drugs potentially involved in pathways associated to osteoarthritis pathogenesis.


Assuntos
Sulfatos de Condroitina/farmacologia , Osteoartrite/metabolismo , Sinoviócitos/efeitos dos fármacos , Organismos Aquáticos/química , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Feminino , Glucosamina/farmacologia , Humanos , Pessoa de Meia-Idade , Proteoma/genética , Proteoma/metabolismo , Sinoviócitos/metabolismo
8.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255744

RESUMO

The transcription factor CCCTC-binding factor (CTCF) modulates pleiotropic functions mostly related to gene expression regulation. The role of CTCF in large scale genome organization is also well established. A unifying model to explain relationships among many CTCF-mediated activities involves direct or indirect interactions with numerous protein cofactors recruited to specific binding sites. The co-association of CTCF with other architectural proteins such as cohesin, chromodomain helicases, and BRG1, further supports the interplay between master regulators of mammalian genome folding. Here, we report a comprehensive LC-MS/MS mapping of the components of the switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex co-associated with CTCF including subunits belonging to the core, signature, and ATPase modules. We further show that the localization patterns of representative SWI/SNF members significantly overlap with CTCF sites on transcriptionally active chromatin regions. Moreover, we provide evidence of a direct binding of the BRK-BRG1 domain to the zinc finger motifs 4-8 of CTCF, thus, suggesting that these domains mediate the interaction of CTCF with the SWI/SNF complex. These findings provide an updated view of the cooperative nature between CTCF and the SWI/SNF ATP-dependent chromatin remodeling complexes, an important step for understanding how these architectural proteins collaborate to shape the genome.


Assuntos
Fator de Ligação a CCCTC/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Dedos de Zinco/genética , Adenosina Trifosfatases/genética , Sítios de Ligação/genética , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Complexos Multiproteicos/genética , Mapas de Interação de Proteínas/genética , Espectrometria de Massas em Tandem , Coesinas
9.
Molecules ; 24(15)2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31362429

RESUMO

A large range of chronic and degenerative diseases can be prevented through the use of food products and food bioactives. This study reports the health benefits and biological activities of the Urtica dioica (U. dioica) edible plant, with particular focus on its cancer chemopreventive potential. Numerous studies have attempted to investigate the most efficient anti-cancer therapy with few side effects and high toxicity on cancer cells to overcome the chemoresistance of cancer cells and the adverse effects of current therapies. In this regard, natural products from edible plants have been assessed as sources of anti-cancer agents. In this article, we review current knowledge from studies that have examined the cytotoxic, anti-tumor and anti-metastatic effects of U. dioica plant on several human cancers. Special attention has been dedicated to the treatment of breast cancer, the most prevalent cancer among women and one of the main causes of death worldwide. The anti-proliferative and apoptotic effects of U. dioica have been demonstrated on different human cancers, investigating the properties of U. dioica at cellular and molecular levels. The potent cytotoxicity and anti-cancer activity of the U. dioica extracts are due to its bioactive natural products content, including polyphenols which reportedly possess anti-oxidant, anti-mutagenic and anti-proliferative properties. The efficacy of this edible plant to prevent or mitigate human cancers has been demonstrated in laboratory conditions as well as in experimental animal models, paving the way to the development of nutraceuticals for new anti-cancer therapies.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Urtica dioica/química , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/uso terapêutico , Relação Estrutura-Atividade
10.
Bioorg Med Chem ; 26(9): 2539-2550, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29656988

RESUMO

Cationic nucleopeptides belong to a family of synthetic oligomers composed by amino acids and nucleobases. Their capability to recognize nucleic acid targets and to cross cellular membranes provided the basis for considering them as novel non-covalent delivery agents for nucleic acid pharmaceuticals. Herein, starting from a 12-mer nucleopeptide model, the number of cationic residues was modulated in order to obtain new nucleopeptides endowed with high solubility in acqueous medium, acceptable bio-stability, low cytotoxicity and good capability to bind nucleic acid. Two candidates were selected to further investigate their potential as nucleic acid carriers, showing higher efficiency to deliver PNA in comparison with RNA. Noteworthy, this study encourages the development of nucleopeptides as new carriers to extend the known strategies for those nucleic acid analogues, especially PNA, that still remain difficult to drive into the cells.


Assuntos
Portadores de Fármacos/metabolismo , Ácidos Nucleicos Peptídicos/metabolismo , Polilisina/metabolismo , RNA/metabolismo , Timina/análogos & derivados , Timina/metabolismo , Cátions/síntese química , Cátions/química , Cátions/metabolismo , Cátions/toxicidade , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Dicroísmo Circular , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Humanos , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/genética , Polilisina/síntese química , Polilisina/química , Polilisina/toxicidade , RNA/química , RNA/genética , Solubilidade , Temperatura , Timina/síntese química , Timina/toxicidade , Transfecção/métodos
11.
Pulm Pharmacol Ther ; 45: 114-120, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28506662

RESUMO

INTRODUCTION: Adipokines are known to play a relevant role in a number of cancer related molecular pathways. Adiponectin is a major adipokine with anti-inflammatory and beneficial metabolic actions. Furthermore, it has been shown to exert anti-carcinogenic effects in various tumor models and some clinical studies suggested an inverse relationship between circulating levels of adiponectin and an increased risk for development of malignancies. On the other hand, the cyclic AMP response element binding (CREB) transcription factor has been clearly linked to lung cancer. METHODS: we analyzed cell proliferation, cell cycle of A549 cells treated with adiponectin as well as CREB activation status in human lung adenocarcinoma A549 cells and in non-small cell lung cancer (NSCLC) samples. RESULTS: adiponectin treatment, at concentrations ranging between 5 and 50 µg/ml mimicking human serum levels, has a significant effect on reducing tumor cell proliferation of A549 cells, mainly by altering cell cycle progression. Importantly, we provide evidence that adiponectin clearly inhibits in a dose- and time-dependent manner CREB phosphorylation (activation) and, at least in part, also the level of CREB protein itself, preceding and accompanying the anti-proliferative effects in response to adiponectin. Moreover, in agreement with previous studies demonstrating that CREB over-expression occurs in many tumors, we also show by western-blotting from lung specimen that CREB is significantly up-regulated in NSCLC samples compared to adjacent normal tissues from six patients. CONCLUSIONS: Overall, our results represent the first evidence of CREB inhibition by adiponectin and may provide new insight into therapeutic strategies for lung cancer.


Assuntos
Adenocarcinoma/metabolismo , Adiponectina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neoplasias Pulmonares/metabolismo , Células A549 , Adenocarcinoma de Pulmão , Adiponectina/administração & dosagem , Ciclo Celular , Proliferação de Células , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Relação Dose-Resposta a Droga , Regulação para Baixo , Humanos , Fosforilação , Fatores de Tempo
12.
Biochim Biophys Acta ; 1844(3): 497-504, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24389235

RESUMO

The specific arrangement of secondary elements in a local motif often totally relies on the formation of coordination bonds between metal ions and protein ligands. This is typified by the ~30 amino acid eukaryotic zinc finger motif in which a ß-sheet and an α-helix are clustered around a zinc ion by various combinations of four ligands. The prokaryotic zinc finger domain (found in the Ros protein from Agrobacterium tumefaciens) is different from the eukaryotic counterpart as it consists of 58 amino acids arranged in a ßßßαα topology stabilized by a 15-residue hydrophobic core. Also, this domain tetrahedrally coordinates zinc and unfolds in the absence of the metal ion. The characterization of proteins belonging to the Ros homologs family has however shown that the prokaryotic zinc finger domain can overcome the metal requirement to achieve the same fold and DNA-binding activity. In the present work, two zinc-lacking Ros homologs (Ml4 and Ml5 proteins) have been thoroughly characterized using bioinformatics, biochemical and NMR techniques. We show how in these proteins a network of hydrogen bonds and hydrophobic interactions surrogate the zinc coordination role in the achievement of the same functional fold.


Assuntos
Agrobacterium tumefaciens/química , Proteínas de Bactérias/química , Metais/metabolismo , Dedos de Zinco , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Dicroísmo Circular , DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Homologia de Sequência de Aminoácidos
13.
Toxins (Basel) ; 16(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38535801

RESUMO

Ribosome inactivating proteins (RIPs) are specific N-ß-glycosylases that are well-characterized in plants. Their enzymatic action is to damage ribosomes, thereby blocking protein translation. Recently, several research groups have been working on the screening for these toxins in edible plants to facilitate the use of RIPs as biotechnological tools and biopesticides and to overcome public prejudice. Here, four novel monomeric (type 1) RIPs have been isolated from the seeds of Atriplex hortensis L. var. rubra, which is commonly known as edible red mountain spinach. These enzymes, named hortensins 1, 2, 4, and 5, are able to release the ß-fragment and, like many other RIPs, adenines from salmon sperm DNA, thus, acting as polynucleotide:adenosine glycosidases. Structurally, hortensins have a different molecular weight and are purified with different yields (hortensin 1, ~29.5 kDa, 0.28 mg per 100 g; hortensin 2, ~29 kDa, 0.29 mg per 100 g; hortensin 4, ~28.5 kDa, 0.71 mg per 100 g; and hortensin 5, ~30 kDa, 0.65 mg per 100 g); only hortensins 2 and 4 are glycosylated. Furthermore, the major isoforms (hortensins 4 and 5) are cytotoxic toward human continuous glioblastoma U87MG cell line. In addition, the morphological change in U87MG cells in the presence of these toxins is indicative of cell death triggered by the apoptotic pathway, as revealed by nuclear DNA fragmentation (TUNEL assay).


Assuntos
Atriplex , Proteínas Inativadoras de Ribossomos Tipo 1 , Sementes , Humanos , Glioblastoma , Ribossomos , Proteínas de Plantas , Linhagem Celular Tumoral
14.
Biomolecules ; 13(2)2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36830606

RESUMO

White button mushroom (Agaricus bisporus (J.E. Lange) Imbach) is one of the widely consumed edible mushrooms. Indeed, A. bisporus fruiting bodies are a rich source of nutrients and bioactive molecules. In addition, several enzymes with biotechnological applications are found in A. bisporus (e.g., enzymes for lignocellulose degradation). Here, a novel ribotoxin-like protein (RL-P) from the edible mushroom A. bisporus was purified and characterized. This RL-P, named bisporitin, is a monomeric protein (17-kDa) exhibiting specific ribonucleolytic activity by releasing the α-fragment (hallmark of RL-Ps) when incubated with rabbit ribosomes. In addition, bisporitin shows magnesium-dependent endonuclease activity and displays a similar far-UV CD spectrum as ageritin, the prototype of RL-Ps, isolated from Cyclocybe aegerita fruiting bodies. Interestingly, bisporitin is the first member of RL-Ps to have noticeably lower thermal stability (Tm = 48.59 ± 0.98 °C) compared to RL-Ps isolated in other mushrooms (Tm > 70 °C). Finally, this protein is only partially hydrolyzed in an in vitro digestive system and does not produce adverse growing effects on eukaryotic cell lines. This evidence paves the way for future investigations on possible bioactivities of this RL-P in the digestive system.


Assuntos
Agaricus , Animais , Coelhos , Ribossomos/metabolismo
15.
Food Res Int ; 173(Pt 1): 113298, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803610

RESUMO

Consumer attention to functional foods containing probiotics is growing because of their positive effects on human health. Kefir is a fermented milk beverage produced by bacteria and yeasts. Given the emerging kefir market, there is an increasing demand for new methodologies to certify product claims such as colony-forming units/g and bacterial taxa. MALDI-TOF MS proved to be useful for the detection/identification of bacteria in clinical diagnostics and agri-food applications. Recently, LC-MS/MS approaches have also been applied to the identification of proteins and proteotypic peptides of lactic acid bacteria in fermented food matrices. Here, we developed an innovative nanoLC-ESI-MS/MS-based methodology for profiling lactic acid bacteria in commercial and artisanal milk kefir products as well as in kefir grains at the genus, species and subspecies level. The proposed workflow enables the authentication of kefir label claims declaring the presence of probiotic starters. An overview of the composition of lactic acid bacteria was also obtained for unlabelled kefir highlighting, for the first time, the great potential of LC-MS/MS as a sensitive tool to assess the authenticity of fermented foods.


Assuntos
Kefir , Lactobacillales , Humanos , Bactérias , Cromatografia Líquida , Kefir/microbiologia , Lactobacillales/metabolismo , Leite/microbiologia , Espectrometria de Massas em Tandem
16.
Food Chem ; 365: 130456, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34243122

RESUMO

The ever-growing use of mass spectrometry (MS) methodologies in food authentication and traceability originates from their unrivalled specificity, accuracy and sensitivity. Such features are crucial for setting up analytical strategies for detecting food frauds and adulterations by monitoring selected components within food matrices. Among MS approaches, protein and peptide profiling has become increasingly consolidated. This review explores the current knowledge on recent MS techniques using protein and peptide biomarkers for assessing food traceability and authenticity, with a specific focus on their use for unmasking potential frauds and adulterations. We provide a survey of the current state-of-the-art instrumentation including the most reliable and sensitive acquisition modes highlighting advantages and limitations. Finally, we summarize the recent applications of MS to protein/peptide analyses in food matrices and examine their potential in ensuring the quality of agro-food products.


Assuntos
Peptídeos , Proteínas , Contaminação de Medicamentos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Toxins (Basel) ; 13(4)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917246

RESUMO

Ageritin is a specific ribonuclease, extracted from the edible mushroom Cyclocybe aegerita (synonym Agrocybe aegerita), which cleaves a single phosphodiester bond located within the universally conserved alpha-sarcin loop (SRL) of 23-28S rRNAs. This cleavage leads to the inhibition of protein biosynthesis, followed by cellular death through apoptosis. The structural and enzymatic properties show that Ageritin is the prototype of a novel specific ribonucleases family named 'ribotoxin-like proteins', recently found in fruiting bodies of other edible basidiomycetes mushrooms (e.g., Ostreatin from Pleurotus ostreatus, Edulitins from Boletus edulis, and Gambositin from Calocybe gambosa). Although the putative role of this toxin, present in high amount in fruiting body (>2.5 mg per 100 g) of C. aegerita, is unknown, its antifungal and insecticidal actions strongly support a role in defense mechanisms. Thus, in this review, we focus on structural, biological, antipathogenic, and enzymatic characteristics of this ribotoxin-like protein. We also highlight its biological relevance and potential biotechnological applications in agriculture as a bio-pesticide and in biomedicine as a therapeutic and diagnostic agent.


Assuntos
Agaricales/enzimologia , Carpóforos/enzimologia , Micotoxinas/metabolismo , Ribonucleases/metabolismo , Agaricales/genética , Animais , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Antivirais/farmacologia , Agentes de Controle Biológico/farmacologia , Carpóforos/genética , Humanos , Micotoxinas/genética , Micotoxinas/farmacologia , Filogenia , Conformação Proteica , Ribonucleases/genética , Ribonucleases/farmacologia , Relação Estrutura-Atividade
18.
Int J Biol Macromol ; 168: 67-76, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33301849

RESUMO

ZBTB2 is a protein belonging to the BTB/POZ zinc-finger family whose members typically contain a BTB/POZ domain at the N-terminus and several zinc-finger domains at the C-terminus. Studies have been carried out to disclose the role of ZBTB2 in cell proliferation, in human cancers and in regulating DNA methylation. Moreover, ZBTB2 has been also described as an ARF, p53 and p21 gene repressor as well as an activator of genes modulating pluripotency. In this scenario, ZBTB2 seems to play many functions likely associated with other proteins. Here we report a picture of the ZBTB2 protein partners in U87MG cell line, identified by high-resolution mass spectrometry (MS) that highlights the interplay between ZBTB2 and chromatin remodeling multiprotein complexes. In particular, our analysis reveals the presence, as ZBTB2 candidate interactors, of SMARCA5 and BAZ1B components of the chromatin remodeling complex WICH and PBRM1, a subunit of the SWI/SNF complex. Intriguingly, we identified all the subunits of the NuRD complex among the ZBTB2 interactors. By co-immunoprecipitation experiments and ChIP-seq analysis we definitely identify ZBTB2 as a new partner of the NuRD complex.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Adenosina Trifosfatases/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA/genética , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Glioblastoma/metabolismo , Humanos , Imunoprecipitação/métodos , Espectrometria de Massas/métodos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/fisiologia , Proteínas Nucleares/genética , Nucleossomos/genética , Ligação Proteica/genética , Proteínas Repressoras/fisiologia , Fatores de Transcrição/metabolismo , Dedos de Zinco/fisiologia
19.
Sci Rep ; 10(1): 21067, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273582

RESUMO

Downhill folding has been defined as a unique thermodynamic process involving a conformations ensemble that progressively loses structure with the decrease of protein stability. Downhill folders are estimated to be rather rare in nature as they miss an energetically substantial folding barrier that can protect against aggregation and proteolysis. We have previously demonstrated that the prokaryotic zinc finger protein Ros87 shows a bipartite folding/unfolding process in which a metal binding intermediate converts to the native structure through a delicate barrier-less downhill transition. Significant variation in folding scenarios can be detected within protein families with high sequence identity and very similar folds and for the same sequence by varying conditions. For this reason, we here show, by means of DSC, CD and NMR, that also in different pH and ionic strength conditions Ros87 retains its partly downhill folding scenario demonstrating that, at least in metallo-proteins, the downhill mechanism can be found under a much wider range of conditions and coupled to other different transitions. We also show that mutations of Ros87 zinc coordination sphere produces a different folding scenario demonstrating that the organization of the metal ion core is determinant in the folding process of this family of proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dobramento de Proteína , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Desdobramento de Proteína , Termodinâmica
20.
Biomolecules ; 10(5)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438765

RESUMO

The protein MucR from Brucella abortus has been described as a transcriptional regulator of many virulence genes. It is a member of the Ros/MucR family comprising proteins that control the expression of genes important for the successful interaction of α-proteobacteria with their eukaryotic hosts. Despite clear evidence of the role of MucR in repressing virulence genes, no study has been carried out so far demonstrating the direct interaction of this protein with the promoter of its target gene babR encoding a LuxR-like regulator repressing virB genes. In this study, we show for the first time the ability of MucR to bind the promoter of babR in electrophoretic mobility shift assays demonstrating a direct role of MucR in repressing this gene. Furthermore, we demonstrate that MucR can bind the virB gene promoter. Analyses by RT-qPCR showed no significant differences in the expression level of virB genes in Brucella abortus CC092 lacking MucR compared to the wild-type Brucella abortus strain, indicating that MucR binding to the virB promoter has little impact on virB gene expression in B. abortus 2308. The MucR modality to bind the two promoters analyzed supports our previous hypothesis that this is a histone-like protein never found before in Brucella.


Assuntos
Proteínas de Bactérias/genética , Brucella abortus/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Brucella abortus/metabolismo , Regulação Bacteriana da Expressão Gênica , Ligação Proteica , Fatores de Transcrição/metabolismo , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA