Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 289(16): 11342-11352, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24599955

RESUMO

We have examined the distribution of ribosomes and nucleoids in live Escherichia coli cells under conditions of growth, division, and in quiescence. In exponentially growing cells translating ribosomes are interspersed among and around the nucleoid lobes, appearing as alternative bands under a fluorescence microscope. In contrast, inactive ribosomes either in stationary phase or after treatment with translation inhibitors such as chloramphenicol, tetracycline, and streptomycin gather predominantly at the cell poles and boundaries with concomitant compaction of the nucleoid. However, under all conditions, spatial segregation of the ribosomes and the nucleoids is well maintained. In dividing cells, ribosomes accumulate on both sides of the FtsZ ring at the mid cell. However, the distribution of the ribosomes among the new daughter cells is often unequal. Both the shape of the nucleoid and the pattern of ribosome distribution are also modified when the cells are exposed to rifampicin (transcription inhibitor), nalidixic acid (gyrase inhibitor), or A22 (MreB-cytoskeleton disruptor). Thus we conclude that the intracellular organization of the ribosomes and the nucleoids in bacteria are dynamic and critically dependent on cellular growth processes (replication, transcription, and translation) as well as on the integrity of the MreB cytoskeleton.


Assuntos
Escherichia coli K12/crescimento & desenvolvimento , Proteínas de Escherichia coli/biossíntese , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Ácido Nalidíxico/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Biossíntese de Proteínas/genética , Inibidores da Síntese de Proteínas/farmacologia , Rifampina/farmacologia , Inibidores da Topoisomerase II/farmacologia
2.
Nucleic Acids Res ; 40(5): 2054-64, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22102582

RESUMO

The ribosomal stalk in bacteria is composed of four or six copies of L12 proteins arranged in dimers that bind to the adjacent sites on protein L10, spanning 10 amino acids each from the L10 C-terminus. To study why multiple L12 dimers are required on the ribosome, we created a chromosomally engineered Escherichia coli strain, JE105, in which the peripheral L12 dimer binding site was deleted. Thus JE105 harbors ribosomes with only a single L12 dimer. Compared to MG1655, the parental strain with two L12 dimers, JE105 showed significant growth defect suggesting suboptimal function of the ribosomes with one L12 dimer. When tested in a cell-free reconstituted transcription-translation assay the synthesis of a full-length protein, firefly luciferase, was notably slower with JE105 70S ribosomes and 50S subunits. Further, in vitro analysis by fast kinetics revealed that single L12 dimer ribosomes from JE105 are defective in two major steps of translation, namely initiation and elongation involving translational GTPases IF2 and EF-G. Varying number of L12 dimers on the ribosome can be a mechanism in bacteria for modulating the rate of translation in response to growth condition.


Assuntos
Proteínas de Escherichia coli/metabolismo , Elongação Traducional da Cadeia Peptídica , Iniciação Traducional da Cadeia Peptídica , Fator G para Elongação de Peptídeos/metabolismo , Fator de Iniciação 2 em Procariotos/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Dimerização , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Guanosina Trifosfato/metabolismo , Proteínas Ribossômicas/química
3.
J Biol Chem ; 287(36): 30257-67, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22767604

RESUMO

Antibiotic resistance in bacteria is often associated with fitness loss, which is compensated by secondary mutations. Fusidic acid (FA), an antibiotic used against pathogenic bacteria Staphylococcus aureus, locks elongation factor-G (EF-G) to the ribosome after GTP hydrolysis. To clarify the mechanism of fitness loss and compensation in relation to FA resistance, we have characterized three S. aureus EF-G mutants with fast kinetics and crystal structures. Our results show that a significantly slower tRNA translocation and ribosome recycling, plus increased peptidyl-tRNA drop-off, are the causes for fitness defects of the primary FA-resistant mutant F88L. The double mutant F88L/M16I is three to four times faster than F88L in both reactions and showed no tRNA drop-off, explaining its fitness compensatory phenotype. The M16I mutation alone showed hypersensitivity to FA, higher activity, and somewhat increased affinity to GTP. The crystal structures demonstrate that Phe-88 in switch II is a key residue for FA locking and also for triggering interdomain movements in EF-G essential for its function, explaining functional deficiencies in F88L. The mutation M16I loosens the hydrophobic core in the G domain and affects domain I to domain II contact, resulting in improved activity both in the wild-type and F88L background. Thus, FA-resistant EF-G mutations causing fitness loss and compensation operate by affecting the conformational dynamics of EF-G on the ribosome.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/química , Farmacorresistência Bacteriana , Ácido Fusídico/química , Fator G para Elongação de Peptídeos/química , Staphylococcus aureus/enzimologia , Substituição de Aminoácidos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Ácido Fusídico/farmacologia , Guanosina Trifosfato/química , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Mutação de Sentido Incorreto , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo , Staphylococcus aureus/genética
4.
Biochim Biophys Acta ; 1803(6): 662-72, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20226819

RESUMO

The Hsp70 homolog Ssb directly binds to the ribosome and contacts a variety of newly synthesized polypeptide chains as soon as they emerge from the ribosomal exit tunnel. For this reason a general role of Ssb in the de novo folding of newly synthesized proteins is highly suggestive. However, for more than a decade client proteins which require Ssb for proper folding have remained elusive. It was therefore speculated that Ssb, despite its ability to interact with a large variety of nascent polypeptides, may assist the folding of only a small and specific subset. Alternatively, it has been suggested that Ssb's function may be limited to the protection of nascent polypeptides from aggregation until downstream chaperones take over and actively fold their substrates. There is also evidence that Ssb, in parallel to a classical chaperone function, is involved in the regulation of cellular signaling processes. Here we aim to summarize what is currently known about Ssb's multiple functions and what remains to be ascertained by future research.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Citosol/metabolismo , Modelos Biológicos , Chaperonas Moleculares/química , Dados de Sequência Molecular , Peptídeos/química , Dobramento de Proteína , Estrutura Terciária de Proteína , Ribossomos/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Transcrição Gênica
5.
Tuberculosis (Edinb) ; 100: 95-101, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27553416

RESUMO

The lack of proper treatment for serious infectious diseases due to the emergence of multidrug resistance reinforces the need for the discovery of novel antibiotics. This is particularly true for tuberculosis (TB) for which 3.7% of new cases and 20% of previously treated cases are estimated to be caused by multi-drug resistant strains. In addition, in the case of TB, which claimed 1.5 million lives in 2014, the treatment of the least complicated, drug sensitive cases is lengthy and disagreeable. Therefore, new drugs with novel targets are urgently needed to control resistant Mycobacterium tuberculosis strains. In this manuscript we report the characterization of the thiopeptide micrococcin P1 as an anti-tubercular agent. Our biochemical experiments show that this antibiotic inhibits the elongation step of protein synthesis in mycobacteria. We have further identified micrococcin resistant mutations in the ribosomal protein L11 (RplK); the mutations were located in the proline loop at the N-terminus. Reintroduction of the mutations into a clean genetic background, confirmed that they conferred resistance, while introduction of the wild type RplK allele into resistant strains re-established sensitivity. We also identified a mutation in the 23S rRNA gene. These data, in good agreement with previous structural studies suggest that also in M. tuberculosis micrococcin P1 functions by binding to the cleft between the 23S rRNA and the L11 protein loop, thus interfering with the binding of elongation factors Tu and G (EF-Tu and EF-G) and inhibiting protein translocation.


Assuntos
Antibióticos Antituberculose/farmacologia , Bacteriocinas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Antibióticos Antituberculose/administração & dosagem , Proteínas de Bactérias/biossíntese , Bacteriocinas/administração & dosagem , Células Cultivadas , Contagem de Colônia Microbiana , Relação Dose-Resposta a Droga , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Farmacorresistência Bacteriana/genética , Humanos , Macrófagos/microbiologia , Testes de Sensibilidade Microbiana/métodos , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/isolamento & purificação , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Peptídeos/administração & dosagem , Proteínas Ribossômicas/genética
6.
Open Biol ; 2(3): 120016, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22645663

RESUMO

Fusidic acid (FA) is a bacteriostatic antibiotic that locks elongation factor G (EF-G) to the ribosome after GTP hydrolysis during elongation and ribosome recycling. The plasmid pUB101-encoded protein FusB causes FA resistance in clinical isolates of Staphylococcus aureus through an interaction with EF-G. Here, we report 1.6 and 2.3 Å crystal structures of FusB. We show that FusB is a two-domain protein lacking homology to known structures, where the N-terminal domain is a four-helix bundle and the C-terminal domain has an alpha/beta fold containing a C4 treble clef zinc finger motif and two loop regions with conserved basic residues. Using hybrid constructs between S. aureus EF-G that binds to FusB and Escherichia coli EF-G that does not, we show that the sequence determinants for FusB recognition reside in domain IV and involve the C-terminal helix of S. aureus EF-G. Further, using kinetic assays in a reconstituted translation system, we demonstrate that FusB can rescue FA inhibition of tRNA translocation as well as ribosome recycling. We propose that FusB rescues S. aureus from FA inhibition by preventing formation or facilitating dissociation of the FA-locked EF-G-ribosome complex.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ácido Fusídico/farmacologia , Fator G para Elongação de Peptídeos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Sequência de Aminoácidos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Dados de Sequência Molecular , Fator G para Elongação de Peptídeos/genética , Ligação Proteica/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Bactérias/genética , Staphylococcus aureus/metabolismo
7.
Mol Biol Cell ; 19(12): 5279-88, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18829863

RESUMO

Ribosome-associated complex (RAC) consists of the Hsp40 homolog Zuo1 and the Hsp70 homolog Ssz1. The chaperone participates in the biogenesis of newly synthesized polypeptides. Here we have identified yeast Rpl31, a component of the large ribosomal subunit, as a contact point of RAC at the polypeptide tunnel exit. Rpl31 is encoded by RPL31a and RPL31b, two closely related genes. Delta rpl31a Delta rpl31b displayed slow growth and sensitivity to low as well as high temperatures. In addition, Delta rpl31a Delta rpl31b was highly sensitive toward aminoglycoside antibiotics and suffered from defects in translational fidelity. With the exception of sensitivity at elevated temperature, the phenotype resembled yeast strains lacking one of the RAC subunits or Rpl39, another protein localized at the tunnel exit. Defects of Delta rpl31a Delta rpl31b Delta zuo1 did not exceed that of Delta rpl31a Delta rpl31b or Delta zuo1. However, the combined deletion of RPL31a, RPL31b, and RPL39 was lethal. Moreover, RPL39 was a multicopy suppressor, whereas overexpression of RAC failed to rescue growth defects of Delta rpl31a Delta rpl31b. The findings are consistent with a model in that Rpl31 and Rpl39 independently affect a common ribosome function, whereas Rpl31 and RAC are functionally interdependent. Rpl31, while not essential for binding of RAC to the ribosome, might be involved in proper function of the chaperone complex.


Assuntos
Inibidores Enzimáticos/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fenótipo , Conformação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ribossomos/química , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
J Biol Chem ; 282(47): 33977-84, 2007 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17901048

RESUMO

Eukaryotic ribosomes carry a stable chaperone complex termed ribosome-associated complex consisting of the J-domain protein Zuo1 and the Hsp70 Ssz1. Zuo1 and Ssz1 together with the Hsp70 homolog Ssb1/2 form a functional triad involved in translation and early polypeptide folding processes. Strains lacking one of these components display slow growth, cold sensitivity, and defects in translational fidelity. Ssz1 diverges from canonical Hsp70s insofar that neither the ability to hydrolyze ATP nor binding to peptide substrates is essential in vivo. The exact role within the chaperone triad and whether or not Ssz1 can hydrolyze ATP has remained unclear. We now find that Ssz1 is not an ATPase in vitro, and even its ability to bind ATP is dispensable in vivo. Furthermore, Ssz1 function was independent of ribosome-associated complex formation, indicating that Ssz1 is not merely a structural scaffold for Zuo1. Finally, Ssz1 function in vivo was inactivated when both nucleotide binding and Zuo1 interaction via the C-terminal domain were disrupted in the same mutant. The two domains of this protein thus cooperate in a way that allows for severe interference in either but not in both of them.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico HSP70/genética , Hidrólise , Chaperonas Moleculares/genética , Complexos Multiproteicos/genética , Mutação , Ligação Proteica/genética , Biossíntese de Proteínas/fisiologia , Estrutura Terciária de Proteína/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA