RESUMO
Dimethyl fumarate (DMF) (BG-12, Tecfidera) is a fumaric acid ester (FAE) that was advanced as a multiple sclerosis (MS) therapy largely for potential neuroprotection as it was recognized that FAEs are capable of activating the antioxidative transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, DMF treatment in randomized controlled MS trials was associated with marked reductions in relapse rate and development of active brain MRI lesions, measures considered to reflect CNS inflammation. Here, we investigated the antiinflammatory contribution of Nrf2 in DMF treatment of the MS model, experimental autoimmune encephalomyelitis (EAE). C57BL/6 wild-type (WT) and Nrf2-deficient (Nrf2(-/-)) mice were immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 (p35-55) for EAE induction and treated with oral DMF or vehicle daily. DMF protected WT and Nrf2(-/-) mice equally well from development of clinical and histologic EAE. The beneficial effect of DMF treatment in Nrf2(-/-) and WT mice was accompanied by reduced frequencies of IFN-γ and IL-17-producing CD4(+) cells and induction of antiinflammatory M2 (type II) monocytes. DMF also modulated B-cell MHC II expression and reduced the incidence of clinical disease in a B-cell-dependent model of spontaneous CNS autoimmunity. Our observations that oral DMF treatment promoted immune modulation and provided equal clinical benefit in acute EAE in Nrf2(-/-) and WT mice, suggest that the antiinflammatory activity of DMF in treatment of MS patients may occur through alternative pathways, independent of Nrf2.
Assuntos
Imunidade Adaptativa/imunologia , Fumarato de Dimetilo/administração & dosagem , Imunidade Inata/imunologia , Imunomodulação/imunologia , Fator 2 Relacionado a NF-E2/imunologia , Baço/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Administração Oral , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/administração & dosagem , Imunomodulação/efeitos dos fármacos , Imunossupressores/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Baço/citologia , Baço/efeitos dos fármacosRESUMO
Tumor-reactive T cell exhaustion prevents the success of immune therapies. Pegilodecakin activates intratumoral CD8+ T cells in mice and induces objective tumor responses in patients. Here we report that pegilodecakin induces hallmarks of CD8+ T cell immunity in cancer patients, including elevation of interferon-γ and GranzymeB, expansion and activation of intratumoral CD8+ T cells, and proliferation and expansion of LAG-3+ PD-1+ CD8+ T cells. On pegilodecakin, newly expanded T cell clones, undetectable at baseline, become 1%-10% of the total T cell repertoire in the blood. Elevation of interleukin-18, expansion of LAG-3+ PD-1+ T cells and novel T cell clones each correlated with objective tumor responses. Combined pegilodecakin with anti-PD-1 increased the expansion of LAG-3+ PD-1+ CD8+ T cells.
Assuntos
Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Interleucina-10/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Polietilenoglicóis/uso terapêutico , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Granzimas/sangue , Humanos , Interferon gama/sangue , Interleucina-10/química , Interleucina-10/uso terapêutico , Interleucina-18/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidoresRESUMO
OBJECTIVE: To evaluate the influence of oral laquinimod, a candidate multiple sclerosis (MS) treatment, on induction of T follicular helper cells, development of meningeal B cell aggregates, and clinical disease in a spontaneous B cell-dependent MS model. METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice by immunization with recombinant myelin oligodendrocyte glycoprotein (rMOG) protein. Spontaneous EAE was evaluated in C57BL/6 MOG p35-55-specific T cell receptor transgenic (2D2) × MOG-specific immunoglobulin (Ig)H-chain knock-in (IgHMOG-ki [Th]) mice. Laquinimod was administered orally. T cell and B cell populations were examined by flow cytometry and immunohistochemistry. RESULTS: Oral laquinimod treatment (1) reduced CD11c+CD4+ dendritic cells, (2) inhibited expansion of PD-1+CXCR5+BCL6+ T follicular helper and interleukin (IL)-21-producing activated CD4+CD44+ T cells, (3) suppressed B cell CD40 expression, (4) diminished formation of Fas+GL7+ germinal center B cells, and (5) inhibited development of MOG-specific IgG. Laquinimod treatment not only prevented rMOG-induced EAE, but also inhibited development of spontaneous EAE and the formation of meningeal B cell aggregates. Disability progression was prevented when laquinimod treatment was initiated after mice developed paralysis. Treatment of spontaneous EAE with laquinimod was also associated with increases in CD4+CD25hiFoxp3+ and CD4+CD25+IL-10+ regulatory T cells. CONCLUSIONS: Our observations that laquinimod modulates myelin antigen-specific B cell immune responses and suppresses both development of meningeal B cell aggregates and disability progression in spontaneous EAE should provide insight regarding the potential application of laquinimod to MS treatment. Results of this investigation demonstrate how the 2D2 × Th spontaneous EAE model can be used successfully for preclinical evaluation of a candidate MS treatment.
RESUMO
Demyelination in MS disrupts nerve signals and contributes to axon degeneration. While remyelination promises to restore lost function, it remains unclear whether remyelination will prevent axonal loss. Inflammatory demyelination is accompanied by significant neuronal loss in the experimental autoimmune encephalomyelitis (EAE) mouse model and evidence for remyelination in this model is complicated by ongoing inflammation, degeneration and possible remyelination. Demonstrating the functional significance of remyelination necessitates selectively altering the timing of remyelination relative to inflammation and degeneration. We demonstrate accelerated remyelination after EAE induction by direct lineage analysis and hypothesize that newly formed myelin remains stable at the height of inflammation due in part to the absence of MOG expression in immature myelin. Oligodendroglial-specific genetic ablation of the M1 muscarinic receptor, a potent negative regulator of oligodendrocyte differentiation and myelination, results in accelerated remyelination, preventing axonal loss and improving functional recovery. Together our findings demonstrate that accelerated remyelination supports axonal integrity and neuronal function after inflammatory demyelination.
RESUMO
Reliable biomarkers corresponding to disease progression or therapeutic responsiveness in multiple sclerosis (MS) have not been yet identified. We previously reported that low expression of the antiproliferative gene TOB1 in CD4⺠T cells of individuals presenting with an initial central nervous system (CNS) demyelinating event (a clinically isolated syndrome), correlated with high risk for progression to MS. We report that experimental autoimmune encephalomyelitis (EAE) in Tob1â»/ â» mice was associated with augmented CNS inflammation, increased infiltrating CD4⺠and CD8⺠T cell counts, and increased myelin-reactive Th1 and Th17 cells, with reduced numbers of regulatory T cells. Reconstitution of Rag1â»/ â»mice with Tob1â»/â» CD4⺠T cells recapitulated the aggressive EAE phenotype observed in Tob1â»/â» mice. Furthermore, severe spontaneous EAE was observed when Tob1â»/â» mice were crossed to myelin oligodendrocyte glycoproteinspecific T cell receptor transgenic (2D2) mice. Collectively, our results reveal a critical role for Tob1 in adaptive T cell immune responses that drive development of EAE, thus providing support for the development of Tob1 as a biomarker for demyelinating disease activity.