Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14161, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898086

RESUMO

Ultrasound (US) has gained popularity as a guidance modality for percutaneous needle insertions because it is widely available and non-ionizing. However, coordinating scanning and needle insertion still requires significant experience. Current assistance solutions utilize optical or electromagnetic tracking (EMT) technology directly integrated into the US device or probe. This results in specialized devices or introduces additional hardware, limiting the ergonomics of both the scanning and insertion process. We developed the first ultrasound (US) navigation solution designed to be used as a non-permanent accessory for existing US devices while maintaining the ergonomics during the scanning process. A miniaturized EMT source is reversibly attached to the US probe, temporarily creating a combined modality that provides real-time anatomical imaging and instrument tracking at the same time. Studies performed with 11 clinical operators show that the proposed navigation solution can guide needle insertions with a targeting accuracy of about 5 mm, which is comparable to existing approaches and unaffected by repeated attachment and detachment of the miniaturized tracking solution. The assistance proved particularly helpful for non-expert users and needle insertions performed outside of the US plane. The small size and reversible attachability of the proposed navigation solution promises streamlined integration into the clinical workflow and widespread access to US navigated punctures.


Assuntos
Fenômenos Eletromagnéticos , Agulhas , Humanos , Ultrassonografia de Intervenção/métodos , Ultrassonografia de Intervenção/instrumentação , Miniaturização , Desenho de Equipamento , Imagens de Fantasmas
2.
Med Image Anal ; 86: 102765, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965252

RESUMO

Challenges have become the state-of-the-art approach to benchmark image analysis algorithms in a comparative manner. While the validation on identical data sets was a great step forward, results analysis is often restricted to pure ranking tables, leaving relevant questions unanswered. Specifically, little effort has been put into the systematic investigation on what characterizes images in which state-of-the-art algorithms fail. To address this gap in the literature, we (1) present a statistical framework for learning from challenges and (2) instantiate it for the specific task of instrument instance segmentation in laparoscopic videos. Our framework relies on the semantic meta data annotation of images, which serves as foundation for a General Linear Mixed Models (GLMM) analysis. Based on 51,542 meta data annotations performed on 2,728 images, we applied our approach to the results of the Robust Medical Instrument Segmentation Challenge (ROBUST-MIS) challenge 2019 and revealed underexposure, motion and occlusion of instruments as well as the presence of smoke or other objects in the background as major sources of algorithm failure. Our subsequent method development, tailored to the specific remaining issues, yielded a deep learning model with state-of-the-art overall performance and specific strengths in the processing of images in which previous methods tended to fail. Due to the objectivity and generic applicability of our approach, it could become a valuable tool for validation in the field of medical image analysis and beyond.


Assuntos
Algoritmos , Laparoscopia , Humanos , Processamento de Imagem Assistida por Computador/métodos
3.
Sci Data ; 8(1): 101, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846356

RESUMO

Image-based tracking of medical instruments is an integral part of surgical data science applications. Previous research has addressed the tasks of detecting, segmenting and tracking medical instruments based on laparoscopic video data. However, the proposed methods still tend to fail when applied to challenging images and do not generalize well to data they have not been trained on. This paper introduces the Heidelberg Colorectal (HeiCo) data set - the first publicly available data set enabling comprehensive benchmarking of medical instrument detection and segmentation algorithms with a specific emphasis on method robustness and generalization capabilities. Our data set comprises 30 laparoscopic videos and corresponding sensor data from medical devices in the operating room for three different types of laparoscopic surgery. Annotations include surgical phase labels for all video frames as well as information on instrument presence and corresponding instance-wise segmentation masks for surgical instruments (if any) in more than 10,000 individual frames. The data has successfully been used to organize international competitions within the Endoscopic Vision Challenges 2017 and 2019.


Assuntos
Colo Sigmoide/cirurgia , Proctocolectomia Restauradora/instrumentação , Reto/cirurgia , Sistemas de Navegação Cirúrgica , Ciência de Dados , Humanos , Laparoscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA