Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Bioorg Chem ; 145: 107231, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394919

RESUMO

The binding of human galectins by glycomimetic inhibitors is a promising therapeutic approach. The structurally distinct group of tandem-repeat galectins has scarcely been studied so far, and there is hardly any knowledge on their ligand specificity or their inhibitory potential, particularly concerning non-natural carbohydrates. Here, we present the synthesis of a library of seven 3-O-disubstituted thiodigalactoside-derived glycomimetics and their affinity to two tandem-repeat galectins, Gal-8 and Gal-9. The straightforward synthesis of these glycomimetics involved dibutyltin oxide-catalyzed 3,3́-O-disubstitution of commercially available unprotected thiodigalactoside, and conjugation of various aryl substituents by copper-catalyzed Huisgen azide-alkyne cycloaddition (CuAAC). The inhibitory potential of the prepared glycomimetics for Gal-8 and Gal-9 was assessed, and compared with the established galectins Gal-1 and Gal-3. The introduction of C-3 substituents resulted in an over 40-fold increase in affinity compared with unmodified TDG. The structure-affinity relations within the studied series were discussed using molecular modeling. Furthermore, the prepared glycomimetics were shown to scavenge Gal-8 and Gal-9 from the surface of cancer cells. This pioneering study on the synthetic inhibitors especially of Gal-9 identified lead compounds that may be used in further biomedical research.


Assuntos
Galectinas , Tiogalactosídeos , Humanos , Ligação Proteica , Galectinas/metabolismo , Tiogalactosídeos/química , Carboidratos/química
2.
Org Biomol Chem ; 21(6): 1294-1302, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36647793

RESUMO

Galectins are lectins that bind ß-galactosides. They are involved in important extra- and intracellular biological processes such as apoptosis, and regulation of the immune system or the cell cycle. High-affinity ligands of galectins may introduce new therapeutic approaches or become new tools for biomedical research. One way of increasing the low affinity of ß-galactoside ligands to galectins is their multivalent presentation, e.g., using calixarenes. We report on the synthesis of glycocalix[4]arenes in cone, partial cone, 1,2-alternate, and 1,3-alternate conformations carrying a lactosyl ligand on three different linkers. The affinity of the prepared compounds to a library of human galectins was determined using competitive ELISA assay and biolayer interferometry. Structure-affinity relationships regarding the influence of the linker and the core structure were formulated. Substantial differences were found between various linker lengths and the position of the triazole unit. The formation of supramolecular clusters was detected by atomic force microscopy. The present work gives a systematic insight into prospective galectin ligands based on the calix[4]arene core.


Assuntos
Galectinas , Glicocálix , Humanos , Galectinas/química , Ligantes , Estudos Prospectivos , Conformação Molecular
3.
Bioorg Chem ; 131: 106279, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36446202

RESUMO

Galectins are proteins of the family of human lectins. By binding terminal galactose units of cell surface glycans, they moderate biological and pathological processes such as cell signaling, cell adhesion, apoptosis, fibrosis, carcinogenesis, and metabolic disorders. The binding of monovalent glycans to galectins is usually relatively weak. Therefore, the presentation of carbohydrate ligands on multivalent scaffolds can efficiently increase and/or discriminate the affinity of the glycoconjugate to different galectins. A library of glycoclusters and glycodendrimers with various structural presentations of the common functionalized N-acetyllactosamine ligand was prepared to evaluate how the mode of presentation affects the affinity and selectivity to the two most abundant galectins, galectin-1 (Gal-1) and galectin-3 (Gal-3). In addition, the effect of a one- to two-unit carbohydrate spacer on the affinity of the glycoconjugates was determined. A new design of the biolayer interferometry (BLI) method with specific AVI-tagged constructs was used to determine the affinity to galectins, and compared with the gold-standard method of isothermal titration calorimetry (ITC). This study reveals new routes to low nanomolar glycoconjugate inhibitors of galectins of interest for biomedical research.


Assuntos
Galectinas , Glicoconjugados , Humanos , Ligantes , Galectinas/metabolismo , Glicoconjugados/farmacologia , Glicoconjugados/química , Carboidratos/química , Polissacarídeos/metabolismo
4.
J Proteome Res ; 21(3): 778-787, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606283

RESUMO

Anorexia nervosa (AN), a pathological restriction of food intake, leads to metabolic dysregulation. We conducted a metabolomics study to reveal changes caused by AN and the effect of hospital realimentation on metabolism. Both stool and serum from patients with AN and healthy controls were analyzed by NMR and MS. Statistical analysis revealed several altered biochemical and anthropometric parameters and 50 changed metabolites, including phospholipids, acylcarnitines, amino acids, derivatives of nicotinic acid, nucleotides, and energy metabolism intermediates. Biochemical and anthropometric parameters were correlated with metabolomic data. Metabolic changes in patients with AN described in our study imply serious system disruption defects, such as the development of inflammation and oxidative stress, changed free thyroxine (fT4) and thyroid-stimulating hormone (TSH) levels, a deficit of vitamins, muscle mass breakdown, and a decrease in ketone bodies as an important source of energy for the brain and heart. Furthermore, our data indicate only a very slight improvement after treatment. However, correlations of metabolomic results with body weight, interleukin 6, tumor necrosis factor α, fT4, and TSH might entail better prognoses and treatment effectiveness in patients with better system parameter status. Data sets are deposited in MassIVE: MSV000087713, DOI: 10.25345/C57R7X.


Assuntos
Anorexia Nervosa , Anorexia Nervosa/metabolismo , Anorexia Nervosa/terapia , Humanos , Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Hormônios Tireóideos , Tireotropina
5.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628552

RESUMO

Sulfation is an important reaction in nature, and sulfated phenolic compounds are of interest as standards of mammalian phase II metabolites or pro-drugs. Such standards can be prepared using chemoenzymatic methods with aryl sulfotransferases. The aim of the present work was to obtain a large library of sulfated phenols, phenolic acids, flavonoids, and flavonolignans and optimize their HPLC (high performance liquid chromatography) analysis. Four new sulfates of 2,3,4-trihydroxybenzoic acid, catechol, 4-methylcatechol, and phloroglucinol were prepared and fully characterized using MS (mass spectrometry), 1H, and 13C NMR. The separation was investigated using HPLC with PDA (photodiode-array) detection and a total of 38 standards of phenolics and their sulfates. Different stationary (monolithic C18, C18 Polar, pentafluorophenyl, ZICpHILIC) and mobile phases with or without ammonium acetate buffer were compared. The separation results were strongly dependent on the pH and buffer capacity of the mobile phase. The developed robust HPLC method is suitable for the separation of enzymatic sulfation reaction mixtures of flavonoids, flavonolignans, 2,3-dehydroflavonolignans, phenolic acids, and phenols with PDA detection. Moreover, the method is directly applicable in conjunction with mass detection due to the low flow rate and the absence of phosphate buffer and/or ion-pairing reagents in the mobile phase.


Assuntos
Flavonolignanos , Sulfatos , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Fenóis/análise
6.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456924

RESUMO

Enzymatic synthesis is an elegant biocompatible approach to complex compounds such as human milk oligosaccharides (HMOs). These compounds are vital for healthy neonatal development with a positive impact on the immune system. Although HMOs may be prepared by glycosyltransferases, this pathway is often complicated by the high price of sugar nucleotides, stringent substrate specificity, and low enzyme stability. Engineered glycosidases (EC 3.2.1) represent a good synthetic alternative, especially if variations in the substrate structure are desired. Site-directed mutagenesis can improve the synthetic process with higher yields and/or increased reaction selectivity. So far, the synthesis of human milk oligosaccharides by glycosidases has mostly been limited to analytical reactions with mass spectrometry detection. The present work reveals the potential of a library of engineered glycosidases in the preparative synthesis of three tetrasaccharides derived from lacto-N-tetraose (Galß4GlcNAcß3Galß4Glc), employing sequential cascade reactions catalyzed by ß3-N-acetylhexosaminidase BbhI from Bifidobacterium bifidum, ß4-galactosidase BgaD-B from Bacillus circulans, ß4-N-acetylgalactosaminidase from Talaromyces flavus, and ß3-galactosynthase BgaC from B. circulans. The reaction products were isolated and structurally characterized. This work expands the insight into the multi-step catalysis by glycosidases and shows the path to modified derivatives of complex carbohydrates that cannot be prepared by standard glycosyltransferase methods.


Assuntos
Bifidobacterium bifidum , Leite Humano , Bifidobacterium bifidum/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/metabolismo , Humanos , Recém-Nascido , Leite Humano/metabolismo , Oligossacarídeos/química , Especificidade por Substrato
7.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499496

RESUMO

Phenolic acids are known flavonoid metabolites, which typically undergo bioconjugation during phase II of biotransformation, forming sulfates, along with other conjugates. Sulfated derivatives of phenolic acids can be synthesized by two approaches: chemoenzymatically by 3'-phosphoadenosine-5'-phosphosulfate (PAPS)-dependent sulfotransferases or PAPS-independent aryl sulfotransferases such as those from Desulfitobacterium hafniense, or chemically using SO3 complexes. Both approaches were tested with six selected phenolic acids (2-hydroxyphenylacetic acid (2-HPA), 3-hydroxyphenylacetic acid (3-HPA), 4-hydroxyphenylacetic acid (4-HPA), 3,4-dihydroxyphenylacetic acid (DHPA), 3-(4-hydroxyphenyl)propionic acid (4-HPP), and 3,4-dihydroxyphenylpropionic acid (DHPP)) to create a library of sulfated metabolites of phenolic acids. The sulfates of 3-HPA, 4-HPA, 4-HPP, DHPA, and DHPP were all obtained by the methods of chemical synthesis. In contrast, the enzymatic sulfation of monohydroxyphenolic acids failed probably due to enzyme inhibition, whereas the same reaction was successful for dihydroxyphenolic acids (DHPA and DHPP). Special attention was also paid to the counterions of the sulfates, a topic often poorly reported in synthetic works. The products obtained will serve as authentic analytical standards in metabolic studies and to determine their biological activity.


Assuntos
Fosfoadenosina Fosfossulfato , Sulfotransferases , Fosfoadenosina Fosfossulfato/química , Fosfoadenosina Fosfossulfato/metabolismo , Sulfotransferases/metabolismo , Sulfatos/metabolismo , Hidroxibenzoatos
8.
Chembiochem ; 22(23): 3319-3325, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34541742

RESUMO

The substantial increase in DNA sequencing efforts has led to a rapid expansion of available sequences in glycoside hydrolase families. The ever-increasing sequence space presents considerable opportunities for the search for enzymes with novel functionalities. In this work, the sequence-function space of glycoside hydrolase family 94 (GH94) was explored in detail, using a combined approach of phylogenetic analysis and sequence similarity networks. The identification and experimental screening of unknown clusters led to the discovery of an enzyme from the soil bacterium Paenibacillus polymyxa that acts as a 4-O-ß-d-glucosyl-d-galactose phosphorylase (GGalP), a specificity that has not been reported to date. Detailed characterization of GGalP revealed that its kinetic parameters were consistent with those of other known phosphorylases. Furthermore, the enzyme could be used for production of the rare disaccharides 4-O-ß-d-glucosyl-d-galactose and 4-O-ß-d-glucosyl-l-arabinose. Our current work highlights the power of rational sequence space exploration in the search for novel enzyme specificities, as well as the potential of phosphorylases for rare disaccharide synthesis.


Assuntos
Glicosídeo Hidrolases/metabolismo , Paenibacillus polymyxa/enzimologia , Dissacarídeos/biossíntese , Dissacarídeos/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Modelos Moleculares , Estrutura Molecular , Filogenia , Especificidade por Substrato
9.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638943

RESUMO

(1) Background: empagliflozin, sodium-glucose co-transporter 2 (SGLT-2) inhibitor, is an effective antidiabetic agent with strong cardio- and nephroprotective properties. The mechanisms behind its cardio- and nephroprotection are still not fully clarified. (2) Methods: we used male hereditary hypertriglyceridemic (hHTG) rats, a non-obese model of dyslipidaemia, insulin resistance, and endothelial dysfunction fed standard diet with or without empagliflozin for six weeks to explore the molecular mechanisms of empagliflozin effects. Nuclear magnetic resonance (NMR)-based metabolomics; quantitative PCR of relevant genes involved in lipid and glucose metabolism, or senescence; glucose and palmitic acid oxidation in isolated tissues and cell lines of adipocytes and hepatocytes were used. (3) Results: empagliflozin inhibited weight gain and decreased adipose tissue weight, fasting blood glucose, and triglycerides and increased HDL-cholesterol. It also improved insulin sensitivity in white fat. NMR spectroscopy identified higher plasma concentrations of ketone bodies, ketogenic amino acid leucine and decreased levels of pyruvate and alanine. In the liver, adipose tissue and kidney, empagliflozin up-regulated expression of genes involved in gluconeogenesis and down-regulated expression of genes involved in lipogenesis along with reduction of markers of inflammation, oxidative stress and cell senescence. (4) Conclusion: multiple positive effects of empagliflozin, including reduced cell senescence and oxidative stress, could contribute to its long-term cardio- and nephroprotective actions.


Assuntos
Tecido Adiposo/metabolismo , Compostos Benzidrílicos/administração & dosagem , Senescência Celular/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Glucosídeos/administração & dosagem , Hipertrigliceridemia/tratamento farmacológico , Hipertrigliceridemia/metabolismo , Hipoglicemiantes/administração & dosagem , Rim/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/administração & dosagem , Células 3T3-L1 , Administração Oral , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Dislipidemias/tratamento farmacológico , Gluconeogênese/genética , Células Hep G2 , Humanos , Resistência à Insulina , Lipogênese/genética , Masculino , Camundongos , Ratos , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
10.
J Proteome Res ; 19(10): 3993-4003, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32830500

RESUMO

Coronary artery disease is one of the most frequent causes of morbidity and mortality worldwide. It is even more prevalent in patients with type 2 diabetes mellitus who suffer from obesity and increased accumulation of epicardial fat with a possible contributing role in the development of coronary artery disease. We performed an MS-based lipidomic analysis of subcutaneous and epicardial adipose tissue in 23 patients with coronary artery disease stratified for the presence/absence of type 2 diabetes mellitus and a control group of 13 subjects aiming at identification of factors from epicardial fat contributing to the development of coronary artery disease. The samples of adipose tissues were obtained during elective cardiac surgery. They were extracted and analyzed with and without previous triacylglycerols separation by high-pressure liquid chromatography-mass spectrometry (HPLC-MS). Multivariate and univariate analyses were performed. Lipidomics data were correlated with biochemical parameters. We identified multiple changes in monoacylglycerols, diacylglycerols, triacylglycerols, glycerophosphatidylserines, glycerophosphatidylethanolamines, glycerophosphatidylcholines, ceramides, sphingomyelins, and derivatives of cholesterol. Observed changes included molecules with fatty acids with odd (15:0, 15:1, 17:0, 17:1) and even (10:0, 12:0, 14:0, 16:0, 16:1, 18:0, 18:1, 18:2, 20:4, 20:1, 22:0) fatty acids in both types of adipose tissue. More pronounced changes were detected in epicardial adipose tissue compared to subcutaneous adipose tissue of patients with coronary artery disease and type 2 diabetes. Lipidomic analysis of subcutaneous and epicardial adipose tissue revealed different profiles for patients with coronary artery disease and type 2 diabetes, which might be related to coronary artery disease and the presence of type 2 diabetes.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Tecido Adiposo , Humanos , Lipídeos , Pericárdio , Gordura Subcutânea
11.
Chemistry ; 26(43): 9620-9631, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32368810

RESUMO

The synthesis of tailored bioactive carbohydrates usually comprises challenging (de)protection steps, which lowers synthetic yields and increases time demands. We present here a regioselective single-step introduction of benzylic substituents at 3-hydroxy groups of ß-d-galactopyranosyl-(1→1)-thio-ß-d-galactopyranoside (TDG) employing dibutyltin oxide in good yields. These glycomimetics act as inhibitors of galectins-human lectins, which are biomedically attractive targets for therapeutic inhibition in, for example, cancerogenesis. The affinity of the prepared glycomimetics to galectin-1 and galectin-3 was studied in enzyme-linked immunosorbent (ELISA)-type assays and their potential to inhibit galectin binding on the cell surface was shown. We used our original in vivo biotinylated galectin constructs for easy detection by flow cytometry. The results of the biological experiments were compared with data from molecular modeling with both galectins. The present work reveals a facile and elegant synthetic route for the preparation of TDG-derived glycomimetics that exhibit differing selectivity and affinity to galectins depending on the choice of 3-O-substitution.


Assuntos
Carboidratos/química , Galectina 1/química , Galectina 3/química , Galectinas/química , Tiogalactosídeos/química , Proteínas Sanguíneas , Galactose , Galectina 1/metabolismo , Galectina 3/metabolismo , Galectinas/metabolismo , Humanos , Modelos Moleculares
12.
Biomacromolecules ; 21(2): 641-652, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31904940

RESUMO

N-Acetyllactosamine (LacNAc; Galß4GlcNAc) is a typical disaccharide ligand of galectins. The most abundant members of these human lectins, galectin-1 (Gal-1) and galectin-3 (Gal-3), participate in a number of pathologies including cancerogenesis and metastatic formation. In this study, we synthesized a series of fifteen N-(2-hydroxypropyl)methacrylamide (HPMA)-based glycopolymers with varying LacNAc amounts and presentations and evaluated the impact of their architecture on the binding affinity to Gal-1 and Gal-3. The controlled radical reversible addition-fragmentation chain transfer copolymerization technique afforded linear polymer precursors with comparable molecular weight (Mn ≈ 22,000 g mol-1) and narrow dispersity (D̵ ≈ 1.1). The precursors were conjugated with the functionalized LacNAc disaccharide (4-22 mol % content in glycopolymer) prepared by enzymatic synthesis under catalysis by ß-galactosidase from Bacillus circulans. The structure-affinity relationship study based on the enzyme-linked immunosorbent assay revealed that the type of LacNAc presentation, individual or clustered on bi- or trivalent linkers, brings a clear discrimination (almost 300-fold) between Gal-1 and Gal-3, reaching avidity to Gal-1 in the nanomolar range. Whereas Gal-1 strongly preferred a dense presentation of individually distributed LacNAc epitopes, Gal-3 preferred a clustered LacNAc presentation. Such a strong galectin preference based just on the structure of a multivalent glycopolymer type is exceptional. The prepared nontoxic, nonimmunogenic, and biocompatible glycopolymers are prospective for therapeutic applications requiring selectivity for one particular galectin.


Assuntos
Acrilamidas/química , Amino Açúcares/química , Proteínas Sanguíneas/análise , Galectina 1/análise , Galectinas/análise , Polímeros/química , Bacillus/enzimologia , Proteínas Sanguíneas/metabolismo , Catálise , Dissacarídeos/síntese química , Ensaio de Imunoadsorção Enzimática , Epitopos , Galectina 1/metabolismo , Galectinas/metabolismo , Espectroscopia de Ressonância Magnética , Polimerização , Polímeros/metabolismo , Polímeros/farmacologia , beta-Galactosidase/metabolismo
13.
Int J Mol Sci ; 21(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784723

RESUMO

Rutinosidases (α-l-rhamnopyranosyl-(1-6)-ß-d-glucopyranosidases, EC 3.2.1.168, CAZy GH5) are diglycosidases that cleave the glycosidic bond between the disaccharide rutinose and the respective aglycone. Similar to many retaining glycosidases, rutinosidases can also transfer the rutinosyl moiety onto acceptors with a free -OH group (so-called transglycosylation). The recombinant rutinosidase from Aspergillus niger (AnRut) is selectively produced in Pichia pastoris. It can catalyze transglycosylation reactions as an unpurified preparation directly from cultivation. This enzyme exhibits catalytic activity towards two substrates; in addition to rutinosidase activity, it also exhibits ß-d-glucopyranosidase activity. As a result, new compounds are formed by ß-glucosylation or rutinosylation of acceptors such as alcohols or strong inorganic nucleophiles (NaN3). Transglycosylation products with aliphatic aglycones are resistant towards cleavage by rutinosidase, therefore, their side hydrolysis does not occur, allowing higher transglycosylation yields. Fourteen compounds were synthesized by glucosylation or rutinosylation of selected acceptors. The products were isolated and structurally characterized. Interactions between the transglycosylation products and the recombinant AnRut were analyzed by molecular modeling. We revealed the role of a substrate tunnel in the structure of AnRut, which explained the unusual catalytic properties of this glycosidase and its specific transglycosylation potential. AnRut is attractive for biosynthetic applications, especially for the use of inexpensive substrates (rutin and isoquercitrin).


Assuntos
Aspergillus niger/enzimologia , Dissacarídeos/metabolismo , Glicosídeo Hidrolases/metabolismo , Domínio Catalítico , Dissacarídeos/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/química , Glicosilação , Hidrólise , Simulação de Acoplamento Molecular , Proteínas Recombinantes/metabolismo , Rutina/química , Rutina/metabolismo , Especificidade por Substrato
14.
J Proteome Res ; 18(4): 1735-1750, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30810318

RESUMO

In this study, the combination of metabolomics and standard biochemical and biometric parameters was used to describe the metabolic effects of diet-induced obesity and its treatment with the novel antiobesity compound palm11-PrRP31 (palmitoylated prolactin-releasing peptide) in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). The results showed that SHR on a high-fat (HF) diet were normoglycemic with obesity and hypertension, while WKY on the HF diet were normotensive and obese with prediabetes. NMR-based metabolomics revealed mainly several microbial cometabolites altered by the HF diet, particularly in urine. The HF diet induced similar changes in both models. However, two groups of genotype-specific metabolites were defined: metabolites specific to the genotype at baseline (e.g., 1-methylnicotinamide, phenylacetylglycine, taurine, methylamine) and metabolites reacting specifically to the HF diet in individual genotypes (2-oxoglutarate, dimethylamine, N-butyrylglycine, p-cresyl sulfate). The palm11-PrRP31 lowered body weight and improved biochemical and biometric parameters in both strains, and it improved glucose tolerance in WKY rats on the HF diet. In urine, the therapy induced significant decrease of formate and 1-methylnicotinamide in SHR and alanine, allantoin, dimethylamine, and N-butyrylglycine in WKY. Altogether, our study confirms the effectiveness of palm11-PrRP31 for antiobesity treatment.


Assuntos
Fármacos Antiobesidade/farmacologia , Metaboloma/efeitos dos fármacos , Obesidade/metabolismo , Hormônio Liberador de Prolactina/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Espectroscopia de Ressonância Magnética , Metabolômica , Ratos , Ratos Endogâmicos SHR
15.
Bioconjug Chem ; 30(9): 2373-2383, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31479241

RESUMO

Clostridium difficile infections cause gastrointestinal disorders and can lead to life-threatening conditions. The symptoms can vary from severe diarrhea to the formation of pseudomembranous colitis and therefore trigger a need for new therapies. The initial step of disease is the binding of the bacterial enterotoxins toxin A and B to the cell surface of epithelial intestinal cells. Scavenging of the toxins is crucial to inhibit their fatal effect in the human body and circumvent the administration of antibiotics. Cell surface glycans are common as ligands for TcdA. Although crucial for carbohydrate-protein interactions, a multivalent presentation of glycans for binding has been hardly considered. Here, we establish a neo-glycoprotein-based glycan library to identify an effective multivalent glycan ligand for TcdA. It comprises 40 different glycan epitopes based on N-acetyllactosamine precursors. Nine structures exhibit strong binding of the receptor domain. Among them, the Lewisy-Lewisx-epitope shows the best performance for binding both the receptor domain and the holotoxin. Therefore, the glycan was synthesized de novo and coupled to BSA as a scaffold for multivalent presentation. The corresponding neo-glycoprotein facilitates the proper scavenging of TcdA in vitro and effectively protects HT29 cells from TcdA-induced cell damage.


Assuntos
Toxinas Bacterianas/metabolismo , Enterotoxinas/metabolismo , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Biblioteca Gênica , Células HT29 , Humanos , Ligação Proteica
16.
Appl Microbiol Biotechnol ; 103(4): 1737-1753, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30603849

RESUMO

ß-N-Acetylhexosaminidases (EC 3.2.1.52) are typical of their dual activity encompassing both N-acetylglucosamine and N-acetylgalactosamine substrates. Here we present the isolation and characterization of a selective ß-N-acetylhexosaminidase from the fungal strain of Aspergillus versicolor. The enzyme was recombinantly expressed in Pichia pastoris KM71H in a high yield and purified in a single step using anion-exchange chromatography. Homologous molecular modeling of this enzyme identified crucial differences in the enzyme active site that may be responsible for its high selectivity for N-acetylglucosamine substrates compared to fungal ß-N-acetylhexosaminidases from other sources. The enzyme was used in a sequential reaction together with a mutant ß-N-acetylhexosaminidase from Talaromyces flavus with an enhanced synthetic capability, affording a bioactive disaccharide bearing an azido functional group. The azido function enabled an elegant multivalent presentation of this disaccharide on an aromatic carrier. The resulting model glycoconjugate is applicable as a selective ligand of galectin-3 - a biomedically attractive human lectin. These results highlight the importance of a general availability of robust and well-defined carbohydrate-active enzymes with tailored catalytic properties for biotechnological and biomedical applications.


Assuntos
Aspergillus/enzimologia , Dissacarídeos/metabolismo , Proteínas Recombinantes/metabolismo , Talaromyces/enzimologia , beta-N-Acetil-Hexosaminidases/metabolismo , Domínio Catalítico , Cromatografia por Troca Iônica , Expressão Gênica , Modelos Moleculares , Pichia/genética , Pichia/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , beta-N-Acetil-Hexosaminidases/química , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/isolamento & purificação
17.
Biotechnol Appl Biochem ; 66(1): 53-59, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30294837

RESUMO

The structure of the carbohydrate moiety of a natural phenolic glycoside can have a significant effect on the molecular interactions and physicochemical and pharmacokinetic properties of the entire compound, which may include anti-inflammatory and anticancer activities. The enzyme 6-O-α-rhamnosyl-ß-glucosidase (EC 3.2.1.168) has the capacity to transfer the rutinosyl moiety (6-O-α-l-rhamnopyranosyl-ß-d-glucopyranose) from 7-O-rutinosylated flavonoids to hydroxylated organic compounds. This transglycosylation reaction was optimized using hydroquinone (HQ) and hesperidin as rutinose acceptor and donor, respectively. Since HQ undergoes oxidation in a neutral to alkaline aqueous environment, the transglycosylation process was carried out at pH values ≤6.0. The structure of 4-hydroxyphenyl-ß-rutinoside was confirmed by NMR, that is, a single glycosylated product with a free hydroxyl group was formed. The highest yield of 4-hydroxyphenyl-ß-rutinoside (38%, regarding hesperidin) was achieved in a 2-h process at pH 5.0 and 30 °C, with 36 mM OH-acceptor and 5% (v/v) cosolvent. Under the same conditions, the enzyme synthesized glycoconjugates of various phenolic compounds (phloroglucinol, resorcinol, pyrogallol, catechol), with yields between 12% and 28% and an apparent direct linear relationship between the yield and the pKa value of the aglycon. This work is a contribution to the development of convenient and sustainable processes for the glycosylation of small phenolic compounds.


Assuntos
Acremonium/enzimologia , Dissacarídeos/química , Proteínas Fúngicas/química , Glicosídeo Hidrolases/química , Acremonium/genética , Dissacarídeos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosilação , Concentração de Íons de Hidrogênio
18.
Int J Mol Sci ; 20(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795104

RESUMO

Nitrilases participate in the nitrile metabolism in microbes and plants. They are widely used to produce carboxylic acids from nitriles. Nitrilases were described in bacteria, Ascomycota and plants. However, they remain unexplored in Basidiomycota. Yet more than 200 putative nitrilases are found in this division via GenBank. The majority of them occur in the subdivision Agaricomycotina. In this work, we analyzed their sequences and classified them into phylogenetic clades. Members of clade 1 (61 proteins) and 2 (25 proteins) are similar to plant nitrilases and nitrilases from Ascomycota, respectively, with sequence identities of around 50%. The searches also identified five putative cyanide hydratases (CynHs). Representatives of clade 1 and 2 (NitTv1 from Trametes versicolor and NitAg from Armillaria gallica, respectively) and a putative CynH (NitSh from Stereum hirsutum) were overproduced in Escherichia coli. The substrates of NitTv1 were fumaronitrile, 3-phenylpropionitrile, ß-cyano-l-alanine and 4-cyanopyridine, and those of NitSh were hydrogen cyanide (HCN), 2-cyanopyridine, fumaronitrile and benzonitrile. NitAg only exhibited activities for HCN and fumaronitrile. The substrate specificities of these nitrilases were largely in accordance with substrate docking in their homology models. The phylogenetic distribution of each type of nitrilase was determined for the first time.


Assuntos
Aminoidrolases/genética , Basidiomycota/genética , Proteínas Fúngicas/genética , Aminoidrolases/química , Aminoidrolases/metabolismo , Basidiomycota/classificação , Basidiomycota/enzimologia , Sítios de Ligação , Fumaratos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cianeto de Hidrogênio/metabolismo , Simulação de Acoplamento Molecular , Filogenia , Ligação Proteica , Piridinas/metabolismo , Especificidade por Substrato
19.
Int J Mol Sci ; 20(24)2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817903

RESUMO

Fungal ß-N-acetylhexosaminidases, though hydrolytic enzymes in vivo, are useful tools in the preparation of oligosaccharides of biological interest. The ß-N-acetylhexosaminidase from Talaromyces flavus is remarkable in terms of its synthetic potential, broad substrate specificity, and tolerance to substrate modifications. It can be heterologously produced in Pichia pastoris in a high yield. The mutation of the Tyr470 residue to histidine greatly enhances its transglycosylation capability. The aim of this work was to identify the structural requirements of this model ß-N-acetylhexosaminidase for its transglycosylation acceptors and formulate a structure-activity relationship study. Enzymatic reactions were performed using an activated glycosyl donor, 4-nitrophenyl N-acetyl-ß-d-glucosaminide or 4-nitrophenyl N-acetyl-ß-d-galactosaminide, and a panel of glycosyl acceptors of varying structural features (N-acetylglucosamine, glucose, N-acetylgalactosamine, galactose, N-acetylmuramic acid, and glucuronic acid). The transglycosylation products were isolated and structurally characterized. The C-2 N-acetamido group in the acceptor molecule was found to be essential for recognition by the enzyme. The presence of the C-2 hydroxyl moiety strongly hindered the normal course of transglycosylation, yielding unique non-reducing disaccharides in a low yield. Moreover, whereas the gluco-configuration at C-4 steered the glycosylation into the ß(1-4) position, the galacto-acceptor afforded a ß(1-6) glycosidic linkage. The Y470H mutant enzyme was tested with acceptors based on ß-glycosides of uronic acid and N-acetylmuramic acid. With the latter acceptor, we were able to isolate and characterize one glycosylation product in a low yield. To our knowledge, this is the first example of enzymatic glycosylation of an N-acetylmuramic acid derivative. In order to explain these findings and predict enzyme behavior, a modeling study was accomplished that correlated with the acquired experimental data.


Assuntos
Glicosídeos/metabolismo , Oligossacarídeos/metabolismo , Talaromyces/enzimologia , beta-N-Acetil-Hexosaminidases/química , beta-N-Acetil-Hexosaminidases/metabolismo , Glicosilação , Cinética , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
20.
Molecules ; 24(3)2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30743988

RESUMO

N-Acetylhexosamine oligosaccharides terminated with GalNAc act as selective ligands of galectin-3, a biomedically important human lectin. Their synthesis can be accomplished by ß-N-acetylhexosaminidases (EC 3.2.1.52). Advantageously, these enzymes tolerate the presence of functional groups in the substrate molecule, such as the thiourea linker useful for covalent conjugation of glycans to a multivalent carrier, affording glyconjugates. ß-N-Acetylhexosaminidases exhibit activity towards both N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) moieties. A point mutation of active-site amino acid Tyr into other amino acid residues, especially Phe, His, and Asn, has previously been shown to strongly suppress the hydrolytic activity of ß-N-acetylhexosaminidases, creating enzymatic synthetic engines. In the present work, we demonstrate that Tyr470 is an important mutation hotspot for altering the ratio of GlcNAcase/GalNAcase activity, resulting in mutant enzymes with varying affinity to GlcNAc/GalNAc substrates. The enzyme selectivity may additionally be manipulated by altering the reaction medium upon changing pH or adding selected organic co-solvents. As a result, we are able to fine-tune the ß-N-acetylhexosaminidase affinity and selectivity, resulting in a high-yield production of the functionalized GalNAcß4GlcNAc disaccharide, a selective ligand of galectin-3.


Assuntos
Polissacarídeos/biossíntese , Polissacarídeos/farmacologia , beta-N-Acetil-Hexosaminidases/metabolismo , Ativação Enzimática , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Conformação Molecular , Mutação , Polissacarídeos/química , Engenharia de Proteínas , beta-N-Acetil-Hexosaminidases/química , beta-N-Acetil-Hexosaminidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA