Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Med Chem ; 41(26): 5247-56, 1998 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-9857092

RESUMO

Clinical studies concerning the role of poly(ADP-ribose) polymerase (PARP) in the repair of drug- and radiation-induced DNA damage have been impeded by the poor solubility, lack of potency, and limited specificity of currently available inhibitors. A series of 2-alkyl- and 2-aryl-substituted 8-hydroxy-, 8-methoxy-, and 8-methylquinazolin-4(3H)-ones has been synthesized and evaluated for PARP inhibitory activity in permeabilized L1210 murine leukemia cells. 8-Methoxy- and 8-methylquinazolinones (14-34) were readily prepared by acylation of 3-substituted anthranilamides with the appropriate acid chloride, followed by base-catalyzed cyclization. The requisite 8-hydroxyquinazolinones (6, 35-39) were synthesized by demethylation of the corresponding 8-methoxyquinazolinones with BBr3. N-Methylation of 8-methoxy-2-methylquinazolinone (15) with MeI, followed by O-demethylation by BBr3, afforded the control N3-methylquinazolinones 42 and 43, respectively. In general, an 8-hydroxy or 8-methyl substituent enhanced inhibitory activity in comparison with an 8-methoxy group. 2-Phenylquinazolinones were marginally less potent than the corresponding 2-methylquinazolinones, but the introduction of an electron-withdrawing or electron-donating 4'-substituent on the 2-aryl ring invariably increased potency. This was particularly evident in the 8-methylquinazolinone series (IC50 values 0.13-0.27 microM), which are among the most potent PARP inhibitors reported to date. N3-Methylquinazolinones 42 and 43 were essentially devoid of activity (IC50 values > 100 microM). In studies with L1210 cells in vitro, a concentration of 200 microM 8-hydroxy-2-methylquinazolinone (6, NU1025) (IC50 value 0.40 microM) potentiated the cytotoxicity of the monomethylating agent 5-(3-methyltriazen-1-yl)imidazole-4-carboxamide and gamma-radiation 3.5- and 1.4-fold, respectively, at the 10% survival level.


Assuntos
Antineoplásicos/síntese química , Reparo do DNA , Inibidores Enzimáticos/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases , Quinazolinas/síntese química , Alquilantes/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Raios gama , Leucemia L1210/patologia , Camundongos , Quinazolinas/química , Quinazolinas/farmacologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
2.
Br J Cancer ; 72(4): 849-56, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7547230

RESUMO

Four poly(ADP-ribose) polymerase (PADPRP) inhibitors [3-aminobenzamide, benzamide, 3,4-dihydro-5-methoxyisoquinolin-1(2H)-one (PD 128763) and 8-hydroxy-2-methylquinazolin-4(3H)-one (NU1025)] were compared with respect to their effects on a number of biological end points. The following parameters were assessed: their ability to inhibit the enzyme in permeabilised L1210 cells; their ability to potentiate the cytotoxicity of temozolomide (including the cytotoxicity of the compounds per se); their ability to increase net levels of temozolomide-induced DNA strand breaks and inhibit temozolomide-induced NAD depletion. PD 128763 and NU1025 were equipotent as PADPRP inhibitors, and 40- and 50-fold more potent than benzamide and 3-aminobenzamide respectively. All the compounds acted in a concentration-dependent manner to potentiate the cytotoxicity and increase DNA strand break levels in cells treated with temozolomide. There was an excellent correlation between the potency of the compounds as PADPRP inhibitors and their effects on cell survival and DNA repair. Temozolomide treatment caused a decrease in cellular NAD levels, and this was abolished by the PADPRP inhibitors. In conclusion, the new generation of PADPRP inhibitors are at least 50-fold more effective than 3-aminobenzamide as chemopotentiators, and can be used at micromolar rather than millimolar concentrations in intact cells.


Assuntos
Antineoplásicos/farmacologia , Dacarbazina/análogos & derivados , Inibidores Enzimáticos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Dacarbazina/farmacologia , Sinergismo Farmacológico , Isoquinolinas/farmacologia , Camundongos , NAD/metabolismo , Temozolomida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA