Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
PLoS Pathog ; 20(6): e1011777, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38913740

RESUMO

COVID-associated coagulopathy seemly plays a key role in post-acute sequelae of SARS- CoV-2 infection. However, the underlying pathophysiological mechanisms are poorly understood, largely due to the lack of suitable animal models that recapitulate key clinical and pathological symptoms. Here, we fully characterized AC70 line of human ACE2 transgenic (AC70 hACE2 Tg) mice for SARS-CoV-2 infection. We noted that this model is highly permissive to SARS-CoV-2 with values of 50% lethal dose and infectious dose as ~ 3 and ~ 0.5 TCID50 of SARS-CoV-2, respectively. Mice infected with 105 TCID50 of SARS-CoV-2 rapidly succumbed to infection with 100% mortality within 5 days. Lung and brain were the prime tissues harboring high viral titers, accompanied by histopathology. However, viral RNA and inflammatory mediators could be detectable in other organs, suggesting the nature of a systemic infection. Lethal challenge of AC70 hACE2 Tg mice caused acute onset of leukopenia, lymphopenia, along with an increased neutrophil-to-lymphocyte ratio (NLR). Importantly, infected animals recapitulated key features of COVID-19-associated coagulopathy. SARS-CoV-2 could induce the release of circulating neutrophil extracellular traps (NETs), along with activated platelet/endothelium marker. Immunohistochemical staining with anti-platelet factor-4 (PF4) antibody revealed profound platelet aggregates especially within blocked veins of the lungs. We showed that acute SARS-CoV-2 infection triggered a hypercoagulable state coexisting with ill-regulated fibrinolysis. Finally, we highlighted the potential role of Annexin A2 (ANXA2) in fibrinolytic failure. ANXA2 is a calcium-dependent phospholipid-binding protein that forms a heterotertrameric complexes localized at the extracellular membranes with two S100A10 small molecules acting as a co-receptor for tissue-plasminogen activator (t-PA), tightly involved in cell surface fibrinolysis. Thus, our results revealing elevated IgG type anti-ANXA2 antibody production, downregulated de novo ANXA2/S100A10 synthesis, and reduced ANXA2/S100A10 association in infected mice, this protein might serve as druggable targets for development of antithrombotic and/or anti-fibrinolytic agents to attenuate pathogenesis of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Modelos Animais de Doenças , Camundongos Transgênicos , SARS-CoV-2 , Animais , COVID-19/patologia , COVID-19/complicações , COVID-19/virologia , COVID-19/metabolismo , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Humanos , Transtornos da Coagulação Sanguínea/virologia , Transtornos da Coagulação Sanguínea/patologia , Pneumonia Viral/virologia , Pneumonia Viral/patologia , Pneumonia Viral/metabolismo , Betacoronavirus , Pulmão/virologia , Pulmão/patologia , Pulmão/metabolismo , Infecções por Coronavirus/virologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/complicações , Pandemias , Armadilhas Extracelulares/metabolismo
2.
Cell Biol Toxicol ; 40(1): 16, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472656

RESUMO

Intervertebral disc degeneration (IVDD) is an aging disease that results in a low quality of life and heavy socioeconomic burden. The mitochondrial unfolded protein response (UPRmt) take part in various aging-related diseases. Our research intents to explore the role and underlying mechanism of UPRmt in IVDD. Nucleus pulposus (NP) cells were exposed to IL-1ß and nicotinamide riboside (NR) served as UPRmt inducer to treat NP cells. Detection of ATP, NAD + and NADH were used to determine the function of mitochondria. MRI, Safranin O-fast green and Immunohistochemical examination were used to determine the degree of IVDD in vivo. In this study, we discovered that UPRmt was increased markedly in the NP cells of human IVDD tissues than in healthy controls. In vitro, UPRmt and mitophagy levels were promoted in NP cells treated with IL-1ß. Upregulation of UPRmt by NR and Atf5 overexpression inhibited NP cell apoptosis and further improved mitophagy. Silencing of Pink1 reversed the protective effects of NR and inhibited mitophagy induced by the UPRmt. In vivo, NR might attenuate the degree of IDD by activating the UPRmt in rats. In summary, the UPRmt was involved in IVDD by regulating Pink1-induced mitophagy. Mitophagy induced by the UPRmt might be a latent treated target for IVDD.


Assuntos
Degeneração do Disco Intervertebral , Mitofagia , Animais , Humanos , Ratos , Fatores Ativadores da Transcrição/metabolismo , Fatores Ativadores da Transcrição/farmacologia , Apoptose , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Qualidade de Vida , Ratos Sprague-Dawley
3.
J Environ Sci (China) ; 145: 1-12, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844310

RESUMO

The potential association between colorectal cancer (CRC) and environmental pollutants is worrisome. Previous studies have found that some perfluoroalkyl acids, including perfluorooctane sulfonate (PFOS), induced colorectal tumors in experimental animals and promoted the migration of and invasion by CRC cells in vitro, but the underlying mechanism is unclear. Here, we investigated the effects of PFOS on the proliferation and migration of CRC cells and the potential mechanisms involving activating the PI3K/Akt-NF-κB signal pathway and epithelial-mesenchymal transition (EMT). It was found that PFOS promoted the growth and migration of HCT116 cells at non-cytotoxic concentrations and increased the mRNA expression of the migration-related angiogenic cytokines vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8). In a mechanistic investigation, the up-stream signal pathway PI3K/Akt-NF-κB was activated by PFOS, and the process was suppressed by LY294002 (PI3K/Akt inhibitor) and BAY11-7082 (NF-κB inhibitor) respectively, leading to less proliferation of HCT116 cells. Furthermore, matrix metalloproteinases (MMP) and EMT-related markers were up-regulated after PFOS exposure, and were also suppressed respectively by LY294002 and BAY11-7082. Moreover, the up-regulation of EMT markers was suppressed by a MMP inhibitor GM6001. Taken together, our results indicated that PFOS promotes colorectal cancer cell migration and proliferation by activating the PI3K/Akt-NF-κB signal pathway and epithelial-mesenchymal transition. This could be a potential toxicological mechanism of PFOS-induced malignant development of colorectal cancer.


Assuntos
Ácidos Alcanossulfônicos , Movimento Celular , Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Fluorocarbonos , Fluorocarbonos/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Colorretais/patologia , Humanos , Movimento Celular/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Células HCT116 , Proteínas Proto-Oncogênicas c-akt/metabolismo , NF-kappa B/metabolismo , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral
4.
J Neuroinflammation ; 20(1): 247, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880726

RESUMO

BACKGROUND: The astrocytes in the central nervous system (CNS) exhibit morphological and functional diversity in brain region-specific pattern. Functional alterations of reactive astrocytes are commonly present in human temporal lobe epilepsy (TLE) cases, meanwhile the neuroinflammation mediated by reactive astrocytes may advance the development of hippocampal epilepsy in animal models. Nuclear factor I-A (NFIA) may regulate astrocyte diversity in the adult brain. However, whether NFIA endows the astrocytes with regional specificity to be involved in epileptogenesis remains elusive. METHODS: Here, we utilize an interference RNA targeting NFIA to explore the characteristics of NFIA expression and its role in astrocyte reactivity in a 4-aminopyridine (4-AP)-induced seizure model in vivo and in vitro. Combined with the employment of a HA-tagged plasmid overexpressing NFIA, we further investigate the precise mechanisms how NIFA facilitates epileptogenesis. RESULTS: 4-AP-induced NFIA upregulation in hippocampal region is astrocyte-specific, and primarily promotes detrimental actions of reactive astrocyte. In line with this phenomenon, both NFIA and vanilloid transient receptor potential 4 (TRPV4) are upregulated in hippocampal astrocytes in human samples from the TLE surgical patients and mouse samples with intraperitoneal 4-AP. NFIA directly regulates mouse astrocytic TRPV4 expression while the quantity and the functional activity of TRPV4 are required for 4-AP-induced astrocyte reactivity and release of proinflammatory cytokines in the charge of NFIA upregulation. NFIA deficiency efficiently inhibits 4-AP-induced TRPV4 upregulation, weakens astrocytic calcium activity and specific astrocyte reactivity, thereby mitigating aberrant neuronal discharges and neuronal damage, and suppressing epileptic seizure. CONCLUSIONS: Our results uncover the critical role of NFIA in astrocyte reactivity and illustrate how epileptogenic brain injury initiates cell-specific signaling pathway to dictate the astrocyte responses.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Fatores de Transcrição NFI , Canais de Cátion TRPV , Animais , Humanos , Camundongos , 4-Aminopiridina/efeitos adversos , Astrócitos/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Canais de Cátion TRPV/metabolismo , Regulação para Cima
5.
PLoS Pathog ; 16(6): e1008538, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32544190

RESUMO

Zika virus (ZIKV) infects pregnant women and causes devastating congenital zika syndrome (CZS). How the virus is vertically transmitted to the fetus and induces neuronal loss remains unclear. We previously reported that Pellino (Peli)1, an E3 ubiquitin ligase, promotes p38MAPK activation in microglia and induction of lethal encephalitis by facilitating the replication of West Nile virus (WNV), a closely related flavivirus. Here, we found that Peli1 expression was induced on ZIKV-infected human monocytic cells, peripheral blood mononuclear cells, human first-trimester placental trophoblasts, and neural stem cell (hNSC)s. Peli1 mediates ZIKV cell attachment, entry and viral translation and its expression is confined to the endoplasmic reticulum. Moreover, Peli1 mediated inflammatory cytokine and chemokine responses and induced cell death in placental trophoblasts and hNSCs. ZIKV-infected pregnant mice lacking Peli1 signaling had reduced placental inflammation and tissue damage, which resulted in attenuated congenital abnormalities. Smaducin-6, a membrane-tethered Smad6-derived peptide, blocked Peli1-mediated NF-κB activation but did not have direct effects on ZIKV infection. Smaducin-6 reduced inflammatory responses and cell death in placental trophoblasts and hNSCs, and diminished placental inflammation and damage, leading to attenuated congenital malformations in mice. Collectively, our results reveal a novel role of Peli1 in flavivirus pathogenesis and suggest that Peli1 promotes ZIKV vertical transmission and neuronal loss by mediating inflammatory cytokine responses and induction of cell death. Our results also identify Smaducin-6 as a potential therapeutic candidate for treatment of CZS.


Assuntos
Síndrome de Guillain-Barré , Proteínas Nucleares/antagonistas & inibidores , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Infecção por Zika virus , Zika virus/metabolismo , Animais , Linhagem Celular , Feminino , Síndrome de Guillain-Barré/tratamento farmacológico , Síndrome de Guillain-Barré/genética , Síndrome de Guillain-Barré/metabolismo , Síndrome de Guillain-Barré/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transdução de Sinais/genética , Trofoblastos/metabolismo , Trofoblastos/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Zika virus/genética , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia
6.
FASEB J ; 35(2): e21330, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33417289

RESUMO

Epilepsy is a common brain disorder, repeated seizures of epilepsy may lead to a series of brain pathological changes such as neuronal or glial damage. However, whether circular RNAs are involved in neuronal injury during epilepsy is not fully understood. Here, we screened circIgf1r in the status epilepticus model through circRNA sequencing, and found that it was upregulated after the status epilepticus model through QPCR analysis. Astrocytes polarizing toward neurotoxic A1 phenotype and neurons loss were observed after status epilepticus. Through injecting circIgf1r siRNA into the lateral ventricle, it was found that knocking down circIgf1r in vivo would induce the polarization of astrocytes to phenotype A2 and reduce neuronal loss. The results in vitro further confirmed that inhibiting the expression of circIgf1r in astrocytes could protect neurons by converting reactive astrocytes from A1 to the protective A2. In addition, knocking down circIgf1r in astrocytes could functionally promote astrocyte autophagy and relieve the destruction of 4-AP-induced autophagy flux. In terms of mechanism, circIgf1r promoted the polarization of astrocytes to phenotype A1 by inhibiting autophagy. Taken together, our results reveal circIgf1r may serve as a potential target for the prevention and treatment of neuron damage after epilepsy.


Assuntos
Astrócitos/metabolismo , Epilepsia/genética , Inativação Gênica , RNA Circular/metabolismo , Animais , Astrócitos/citologia , Células Cultivadas , Epilepsia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Neurônios/metabolismo , RNA Circular/genética , Receptor IGF Tipo 1/genética
7.
J Clin Lab Anal ; 36(7): e24506, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35588441

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are a kind of molecule that cannot code proteins, and their expression is dysregulated in diversified cancers. LncRNA PITPNA-AS1 has been shown to act as a tumor promoter in a variety of malignancies, but its function and regulatory mechanisms in lung squamous cell carcinoma (LUSC) are yet unknown. METHODS: The mRNA and protein expression of genes were examined by RT-qPCR, western blot, and IHC assay. The cell proliferation, migration, invasion, and stemness were detected through CCK-8, colony formation, Transwell and spheroid formation assays. The CD44+ and CD166+ -positive cells were detected through flow cytometry. The binding ability among genes through luciferase reporter and RNA pull-down assays. The tumor growth was detected through in vivo nude mice assay. RESULTS: The lncRNA PITPNA-AS1 had increased expression in LUSC and was linked to a poor prognosis. In LUSC, PITPNA-AS1 also enhanced cell proliferation, migration, invasion, and stemness. This mechanistic investigation showed that PITPNA-AS1 absorbed miR-223-3p and that miR-223-3p targeted PTN. MiR-223-3p inhibition or PTN overexpression might reverse the inhibitory effects of PITPNA-AS1 suppression on LUSC progression, as demonstrated by rescue experiments. In addition, the PITPNA-AS1/miR-223-3p/PTN axis accelerated tumor development in vivo. CONCLUSIONS: It is the first time we investigated the potential role and ceRNA regulatory mechanism of PITPNA-AS1 in LUSC. The data disclosed that PITPNA-AS1 upregulated PTN through sponging miR-223-3p to enhance the onset and progression of LUSC. These findings suggested the ceRNA axis may serve as a promising therapeutic biomarker for LUSC patients.


Assuntos
Carcinoma de Células Escamosas , Proteínas de Transporte , Citocinas , MicroRNAs , RNA Longo não Codificante , Animais , Carcinoma de Células Escamosas/genética , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Citocinas/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/metabolismo , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
8.
Zhongguo Zhong Yao Za Zhi ; 46(11): 2644-2649, 2021 Jun.
Artigo em Zh | MEDLINE | ID: mdl-34296560

RESUMO

To study the clinical efficacy and safety of Bushen Huoxue Culuan Formula in treating infertility caused by diminished ovarian reserve(DOR) with kidney deficiency and blood stasis. A total of 100 DOR patients treated at Xiyuan Hospital, Acupuncture Hospital and Clinic of China Academy of Chinese Medical Sciences from 2017 to 2020 in line with the inclusion criteria were selected and randomly divided into experimental group and control group at the ratio of 1∶1. The experimental group was treated with Bushen Huoxue Culuan Formular, while the control group was treated with Climen and Clomiphene for 3 menstrual cycles. The ovulation rate, pregnancy rate, pregnancy success rate, serum hormone levels, and traditional Chinese medicine(TCM) symptom scores were observed in the 2 groups. The total effective rate was 92.00% in the experimental group and 72.00% in the control group, with a statistical difference between the two groups(P<0.01); the experimental group was superior to the control group in reducing FSH level, increasing AMH level, improving TCM symptoms, increasing pregnancy rate and pregnancy success rate, with a significant difference(P<0.05). There was no abnormal safety indicator and adverse reaction. Bushen Huoxue Culuan Formular is effective in treating infertility caused by DOR due to kidney deficiency and blood stasis, with a safety and reliability.


Assuntos
Medicamentos de Ervas Chinesas , Infertilidade Feminina , Reserva Ovariana , China , Feminino , Humanos , Infertilidade Feminina/tratamento farmacológico , Rim , Gravidez , Reprodutibilidade dos Testes , Resultado do Tratamento
9.
J Infect Dis ; 219(5): 829-835, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30256968

RESUMO

BACKGROUND: The ongoing Middle East respiratory syndrome coronavirus (MERS-CoV) infections pose threats to public health worldwide, making an understanding of MERS pathogenesis and development of effective medical countermeasures (MCMs) urgent. METHODS: We used homozygous (+/+) and heterozygous (+/-) human dipeptidyl peptidase 4 (hDPP4) transgenic mice to study the effect of hDPP4 on MERS-CoV infection. Specifically, we determined values of 50% lethal dose (LD50) of MERS-CoV for the 2 strains of mice, compared and correlated their levels of soluble (s)hDPP4 expression to susceptibility, and explored recombinant (r)shDPP4 as an effective MCM for MERS infection. RESULTS: hDPP4+/+ mice were unexpectedly more resistant than hDPP4+/- mice to MERS-CoV infection, as judged by increased LD50, reduced lung viral infection, attenuated morbidity and mortality, and reduced histopathology. Additionally, the resistance to MERS-CoV infection directly correlated with increased serum shDPP4 and serum virus neutralizing activity. Finally, administration of rshDPP4 led to reduced lung virus titer and histopathology. CONCLUSIONS: Our studies suggest that the serum shDPP4 levels play a role in MERS pathogenesis and demonstrate a potential of rshDPP4 as a treatment option for MERS. Additionally, it offers a validated pair of Tg mice strains for characterizing the effect of shDPP4 on MERS pathogenesis.


Assuntos
Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/sangue , Resistência à Doença , Expressão Gênica , Coronavírus da Síndrome Respiratória do Oriente Médio/crescimento & desenvolvimento , Animais , Dipeptidil Peptidase 4/genética , Modelos Animais de Doenças , Humanos , Dose Letal Mediana , Camundongos , Camundongos Transgênicos
10.
J Infect Dis ; 220(10): 1558-1567, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30911758

RESUMO

BACKGROUND: Infection control measures have played a major role in limiting human/camel-to-human transmission of Middle East respiratory syndrome coronavirus (MERS-CoV); however, development of effective and safe human or camel vaccines is warranted. METHODS: We extended and optimized our previous recombinant adenovirus 5 (rAd5)-based vaccine platform characterized by in vivo amplified and CD40-mediated specific responses to generate MERS-CoV S1 subunit-based vaccine. We generated rAd5 constructs expressing CD40-targeted S1 fusion protein (rAd5-S1/F/CD40L), untargeted S1 (rAd5-S1), and Green Fluorescent Protein (rAd5-GFP), and evaluated their efficacy and safety in human dipeptidyl peptidase 4 transgenic (hDPP4 Tg+) mice. RESULTS: Immunization of hDPP4 Tg+ mice with a single dose of rAd5-S1/F/CD40L elicited as robust and significant specific immunoglobulin G and neutralizing antibodies as those induced with 2 doses of rAd5-S1. After MERS-CoV challenge, both vaccines conferred complete protection against morbidity and mortality, as evidenced by significantly undetectable/reduced pulmonary viral loads compared to the control group. However, rAd5-S1- but not rAd5-S1/F/CD40L-immunized mice exhibited marked pulmonary perivascular hemorrhage post-MERS-CoV challenge despite the observed protection. CONCLUSIONS: Incorporation of CD40L into rAd5-based MERS-CoV S1 vaccine targeting molecule and molecular adjuvants not only enhances immunogenicity and efficacy but also prevents inadvertent pulmonary pathology after viral challenge, thereby offering a promising strategy to enhance safety and potency of vaccines.


Assuntos
Ligante de CD40/farmacologia , Infecções por Coronavirus/prevenção & controle , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Virais/imunologia , Adenovírus Humanos/genética , Adjuvantes Imunológicos/genética , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Ligante de CD40/genética , Infecções por Coronavirus/imunologia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Portadores de Fármacos , Vetores Genéticos , Imunoglobulina G/sangue , Pulmão/virologia , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Glicoproteína da Espícula de Coronavírus/genética , Análise de Sobrevida , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Carga Viral , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
11.
Adv Funct Mater ; 29(28): 1807616, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32313544

RESUMO

The continued threat of emerging, highly lethal infectious pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV) calls for the development of novel vaccine technology that offers safe and effective prophylactic measures. Here, a novel nanoparticle vaccine is developed to deliver subunit viral antigens and STING agonists in a virus-like fashion. STING agonists are first encapsulated into capsid-like hollow polymeric nanoparticles, which show multiple favorable attributes, including a pH-responsive release profile, prominent local immune activation, and reduced systemic reactogenicity. Upon subsequent antigen conjugation, the nanoparticles carry morphological semblance to native virions and facilitate codelivery of antigens and STING agonists to draining lymph nodes and immune cells for immune potentiation. Nanoparticle vaccine effectiveness is supported by the elicitation of potent neutralization antibody and antigen-specific T cell responses in mice immunized with a MERS-CoV nanoparticle vaccine candidate. Using a MERS-CoV-permissive transgenic mouse model, it is shown that mice immunized with this nanoparticle-based MERS-CoV vaccine are protected against a lethal challenge of MERS-CoV without triggering undesirable eosinophilic immunopathology. Together, the biocompatible hollow nanoparticle described herein provides an excellent strategy for delivering both subunit vaccine candidates and novel adjuvants, enabling accelerated development of effective and safe vaccines against emerging viral pathogens.

12.
J Neuroinflammation ; 16(1): 114, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142341

RESUMO

BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is a serious birth complication with high incidence in both advanced and developing countries. Children surviving from HIE often have severe long-term sequela including cerebral palsy, epilepsy, and cognitive disabilities. The severity of HIE in infants is tightly associated with increased IL-1ß expression and astrocyte activation which was regulated by transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel in the TRP family. METHODS: Neonatal hypoxic ischemia (HI) and oxygen-glucose deprivation (OGD) were used to simulate HIE in vivo and in vitro. Primarily cultured astrocytes were used for investigating the expression of glial fibrillary acidic protein (GFAP), IL-1ß, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), and activation of the nucleotide-binding, oligomerization domain (NOD)-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome by using Western blot, q-PCR, and immunofluorescence. Brain atrophy, infarct size, and neurobehavioral disorders were evaluated by Nissl staining, 2,3,5-triphenyltetrazolium chloride monohydrate (TTC) staining and neurobehavioral tests (geotaxis reflex, cliff aversion reaction, and grip test) individually. RESULTS: Astrocytes were overactivated after neonatal HI and OGD challenge. The number of activated astrocytes, the expression level of IL-1ß, brain atrophy, and shrinking infarct size were all downregulated in TRPV1 KO mice. TRPV1 deficiency in astrocytes attenuated the expression of GFAP and IL-1ß by reducing phosphorylation of JAK2 and STAT3. Meanwhile, IL-1ß release was significantly reduced in TRPV1 deficiency astrocytes by inhibiting activation of NLRP3 inflammasome. Additionally, neonatal HI-induced neurobehavioral disorders were significantly improved in the TRPV1 KO mice. CONCLUSIONS: TRPV1 promotes activation of astrocytes and release of astrocyte-derived IL-1ß mainly via JAK2-STAT3 signaling and activation of the NLRP3 inflammasome. Our findings provide mechanistic insights into TRPV1-mediated brain damage and neurobehavioral disorders caused by neonatal HI and potentially identify astrocytic TRPV1 as a novel therapeutic target for treating HIE in the subacute stages (24 h).


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Interleucina-1beta/metabolismo , Canais de Cátion TRPV/deficiência , Animais , Astrócitos/patologia , Encéfalo/patologia , Células Cultivadas , Feminino , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canais de Cátion TRPV/genética
13.
J Neuroinflammation ; 16(1): 214, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722723

RESUMO

BACKGROUND: Neonatal hypoxic-ischemic brain damage (HIBD), a leading cause of neonatal mortality, has intractable sequela such as epilepsy that seriously affected the life quality of HIBD survivors. We have previously shown that ion channel dysfunction in the central nervous system played an important role in the process of HIBD-induced epilepsy. Therefore, we continued to validate the underlying mechanisms of TRPV1 as a potential target for epilepsy. METHODS: Neonatal hypoxic ischemia and oxygen-glucose deprivation (OGD) were used to simulate HIBD in vivo and in vitro. Primarily cultured astrocytes were used to assess the expression of TRPV1, glial fibrillary acidic protein (GFAP), cytoskeletal rearrangement, and inflammatory cytokines by using Western blot, q-PCR, and immunofluorescence. Furthermore, brain electrical activity in freely moving mice was recorded by electroencephalography (EEG). TRPV1 current and neuronal excitability were detected by whole-cell patch clamp. RESULTS: Astrocytic TRPV1 translocated to the membrane after OGD. Mechanistically, astrocytic TRPV1 activation increased the inflow of Ca2+, which promoted G-actin polymerized to F-actin, thus promoted astrocyte migration after OGD. Moreover, astrocytic TRPV1 deficiency decreased the production and release of pro-inflammatory cytokines (TNF, IL-6, IL-1ß, and iNOS) after OGD. It could also dramatically attenuate neuronal excitability after OGD and brain electrical activity in HIBD mice. Behavioral testing for seizures after HIBD revealed that TRPV1 knockout mice demonstrated prolonged onset latency, shortened duration, and decreased seizure severity when compared with wild-type mice. CONCLUSIONS: Collectively, TRPV1 promoted astrocyte migration thus helped the infiltration of pro-inflammatory cytokines (TNF, IL-1ß, IL-6, and iNOS) from astrocytes into the vicinity of neurons to promote epilepsy. Our study provides a strong rationale for astrocytic TRPV1 to be a therapeutic target for anti-epileptogenesis after HIBD.


Assuntos
Astrócitos/metabolismo , Epilepsia/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Inflamação/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Encéfalo/metabolismo , Movimento Celular/fisiologia , Citocinas/metabolismo , Epilepsia/etiologia , Hipóxia-Isquemia Encefálica/complicações , Camundongos , Camundongos Knockout , Neurônios/metabolismo
14.
Dev Neurosci ; 40(4): 289-300, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30391952

RESUMO

Nuclear factor of activated T cells 5 (NFAT5) has recently been classified as a new member of the Rel family. In addition, there are 5 more well-defined members (NF-κB and NFAT1-4) in the Rel family, which participate in regulating the expression of immune and inflammatory response-related genes. NFAT5 was initially identified in renal medullary cells where it regulated the expression of osmoprotective-related genes during the osmotic response. Many studies have demonstrated that NFAT5 is highly expressed in the nuclei of neurons in fetal and adult brains. Additionally, its expression is approximately 10-fold higher in fetal brains. With the development of detection technologies (laser scanning confocal microscopy, transgene technology, etc.), recent studies suggest that NFAT5 is also expressed in glial cells and plays a more diverse functional role. This article aims to summarize the current knowledge regarding the expression of NFAT5, its regulation of activation, and varied biological functions in the brain.


Assuntos
Encéfalo/metabolismo , NF-kappa B/metabolismo , Neuroglia/metabolismo , Fatores de Transcrição/metabolismo , Animais , Regulação da Expressão Gênica/genética , Humanos , Neurônios/metabolismo
15.
J Neuroinflammation ; 15(1): 186, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925377

RESUMO

BACKGROUND: Neonatal hypoxic-ischemic brain damage, characterized by tissue loss and neurologic dysfunction, is a leading cause of mortality and a devastating disease of the central nervous system. We have previously shown that vitexin has been attributed various medicinal properties and has been demonstrated to have neuroprotective roles in neonatal brain injury models. In the present study, we continued to reinforce and validate the basic understanding of vitexin (45 mg/kg) as a potential treatment for epilepsy and explored its possible underlying mechanisms. METHODS: P7 Sprague-Dawley (SD) rats that underwent right common carotid artery ligation and rat brain microvascular endothelial cells (RBMECs) were used for the assessment of Na+-K+-Cl- co-transporter1 (NKCC1) expression, BBB permeability, cytokine expression, and neutrophil infiltration by western blot, q-PCR, flow cytometry (FCM), and immunofluorescence respectively. Furthermore, brain electrical activity in freely moving rats was recorded by electroencephalography (EEG). RESULTS: Our data showed that NKCC1 expression was attenuated in vitexin-treated rats compared to the expression in the HI group in vivo. Oxygen glucose deprivation/reoxygenation (OGD) was performed on RBMECs to explore the role of NKCC1 and F-actin in cytoskeleton formation with confocal microscopy, N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide, and FCM. Concomitantly, treatment with vitexin effectively alleviated OGD-induced NKCC1 expression, which downregulated F-actin expression in RBMECs. In addition, vitexin significantly ameliorated BBB leakage and rescued the expression of tight junction-related protein ZO-1. Furthermore, inflammatory cytokine and neutrophil infiltration were concurrently and progressively downregulated with decreasing BBB permeability in rats. Vitexin also significantly suppressed brain electrical activity in neonatal rats. CONCLUSIONS: Taken together, these results confirmed that vitexin effectively alleviates epilepsy susceptibility through inhibition of inflammation along with improved BBB integrity. Our study provides a strong rationale for the further development of vitexin as a promising therapeutic candidate treatment for epilepsy in the immature brain.


Assuntos
Anticonvulsivantes/uso terapêutico , Apigenina/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Hipóxia-Isquemia Encefálica/complicações , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Animais , Animais Recém-Nascidos , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Cloretos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/deficiência , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/metabolismo , Interleucina-3/genética , Interleucina-3/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética , Proteína da Zônula de Oclusão-1/metabolismo
16.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077630

RESUMO

The use of pathogen recognition receptor (PRR) agonists and the molecular mechanisms involved have been the major focus of research in individual vaccine development. West Nile virus (WNV) nonstructural (NS) 4B-P38G mutant has several features for an ideal vaccine candidate, including significantly reduced neuroinvasiveness, induction of strong adaptive immunity, and protection of mice from wild-type (WT) WNV infection. Here, we determined the role of mitochondrial antiviral signaling protein (MAVS), the adaptor protein for RIG-I-like receptor in regulating host immunity against the NS4B-P38G vaccine. We found that Mavs-/- mice were more susceptible to NS4B-P38G priming than WT mice. Mavs-/- mice had a transiently reduced production of antiviral cytokines and an impaired CD4+ T cell response in peripheral organs. However, antibody and CD8+ T cell responses were minimally affected. NS4B-P38G induced lower type I interferon (IFN), IFN-stimulating gene, and proinflammatory cytokine responses in Mavs-/- dendritic cells and subsequently compromised the antigen-presenting capacity for CD4+ T cells. Interestingly, Mavs-/- mice surviving NS4B-P38G priming were all protected from a lethal WT WNV challenge. NS4B-P38G-primed Mavs-/- mice exhibited equivalent levels of protective CD4+ T cell recall response, a modestly reduced WNV-specific IgM production, but more robust CD8+ T cell recall response. Taken together, our results suggest that MAVS is essential for boosting optimal primary CD4+ T cell responses upon NS4B-P38G vaccination and yet is dispensable for host protection and recall T cell responses during secondary WT WNV infection.IMPORTANCE The production of innate cytokines induced by the recognition of pathogen recognition receptors (PRRs) via their cognate ligands are critical for enhancing antigen-presenting cell functions and influencing T cell responses during microbial infection. The use of PRR agonists and the underlying molecular mechanisms have been the major focus in individual vaccine development. Here, we determined the role of mitochondrial antiviral-signaling protein (MAVS), the adaptor protein for RIG-I like receptor in regulating host immunity against the live attenuated West Nile virus (WNV) vaccine strain, the nonstructural (NS) 4B-P38G mutant. We found that MAVS is important for boosting optimal primary CD4+ T cell response during NS4B-P38G vaccination. However, MAVS is dispensable for memory T cell development and host protection during secondary wild-type WNV infection. Overall, these results may be utilized as a paradigm to aid in the rational development of other efficacious live attenuated flavivirus vaccines.


Assuntos
Imunidade Adaptativa , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfócitos T CD4-Positivos/imunologia , Imunidade Inata , Vacinas contra o Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/imunologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Animais , Anticorpos Antivirais/sangue , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Camundongos , Camundongos Knockout
17.
J Theor Biol ; 441: 19-27, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29305180

RESUMO

Drug resistance and strong contacts actually play crucial roles in epidemic spread in complex systems. Nevertheless, neither theoretical model or methodology is proposed to address this. We thus consider an edge-based epidemic spread model considering the two key ingredients, in which the contacts are grouped into two classes: strong contacts and normal ones. Next, we present a unified edge-based compartmental approach to the spread dynamics on Erdös-Rényi (ER) networks and validate its results by extensive numerical simulations. In case that epidemic is totally drug-resistant, we both numerically and theoretically show a continuous growth of epidemics with infection probability when number of strong contacts is not enough for the emergence of null threshold. If the epidemic owns partial resistance, we would observe evident discontinuous growth with infection probability (discontinuous transitions) and larger final epidemic sizes for few strong contacts, instead of emergence of null threshold with increase of strong contacts. Inhibiting effect of infection threshold, positive roles of strong contacts and strength of strong contacts in promoting outbreaks are also approved. Throughout this paper, we could drive exact predictions through the analytical approach, showing good agreements with numerical simulations.


Assuntos
Doenças Transmissíveis/tratamento farmacológico , Doenças Transmissíveis/epidemiologia , Resistência a Medicamentos , Epidemias , Algoritmos , Surtos de Doenças , Humanos , Modelos Teóricos
18.
J Virol ; 90(1): 57-67, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26446606

RESUMO

UNLABELLED: Characterized animal models are needed for studying the pathogenesis of and evaluating medical countermeasures for persisting Middle East respiratory syndrome-coronavirus (MERS-CoV) infections. Here, we further characterized a lethal transgenic mouse model of MERS-CoV infection and disease that globally expresses human CD26 (hCD26)/DPP4. The 50% infectious dose (ID50) and lethal dose (LD50) of virus were estimated to be <1 and 10 TCID50 of MERS-CoV, respectively. Neutralizing antibody developed in the surviving mice from the ID50/LD50 determinations, and all were fully immune to challenge with 100 LD50 of MERS-CoV. The tissue distribution and histopathology in mice challenged with a potential working dose of 10 LD50 of MERS-CoV were subsequently evaluated. In contrast to the overwhelming infection seen in the mice challenged with 10(5) LD50 of MERS-CoV, we were able to recover infectious virus from these mice only infrequently, although quantitative reverse transcription-PCR (qRT-PCR) tests indicated early and persistent lung infection and delayed occurrence of brain infection. Persistent inflammatory infiltrates were seen in the lungs and brain stems at day 2 and day 6 after infection, respectively. While focal infiltrates were also noted in the liver, definite pathology was not seen in other tissues. Finally, using a receptor binding domain protein vaccine and a MERS-CoV fusion inhibitor, we demonstrated the value of this model for evaluating vaccines and antivirals against MERS. As outcomes of MERS-CoV infection in patients differ greatly, ranging from asymptomatic to overwhelming disease and death, having available both an infection model and a lethal model makes this transgenic mouse model relevant for advancing MERS research. IMPORTANCE: Fully characterized animal models are essential for studying pathogenesis and for preclinical screening of vaccines and drugs against MERS-CoV infection and disease. When given a high dose of MERS-CoV, our transgenic mice expressing hCD26/DPP4 viral receptor uniformly succumbed to death within 6 days, making it difficult to evaluate host responses to infection and disease. We further characterized this model by determining both the ID50 and the LD50 of MERS-CoV in order to establish both an infection model and a lethal model for MERS and followed this by investigating the antibody responses and immunity of the mice that survived MERS-CoV infection. Using the estimated LD50 and ID50 data, we dissected the kinetics of viral tissue distribution and pathology in mice challenged with 10 LD50 of virus and utilized the model for preclinical evaluation of a vaccine and drug for treatment of MERS-CoV infection. This further-characterized transgenic mouse model will be useful for advancing MERS research.


Assuntos
Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Coronavírus da Síndrome Respiratória do Oriente Médio/crescimento & desenvolvimento , Estruturas Animais/patologia , Estruturas Animais/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antivirais/administração & dosagem , Encéfalo/patologia , Encéfalo/virologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Avaliação Pré-Clínica de Medicamentos/métodos , Histocitoquímica , Humanos , Dose Letal Mediana , Fígado/patologia , Fígado/virologia , Pulmão/patologia , Pulmão/virologia , Camundongos Transgênicos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Análise de Sobrevida , Resultado do Tratamento , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
19.
J Virol ; 90(3): 1333-44, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26581984

RESUMO

UNLABELLED: The elderly are known to have enhanced susceptibility to infections and an impaired capacity to respond to vaccination. West Nile virus (WNV), a mosquito-borne flavivirus, has induced severe neurological symptoms, mostly in the elderly population. No vaccines are available for human use. Recent work showed that an attenuated WNV, a nonstructural (NS) 4B-P38G mutant, induced no lethality but strong immune responses in young (6- to 10-week-old) mice. While studying protective efficacy, we found unexpectedly that old (21- to 22-month) mice were susceptible to WNV NS4B-P38G mutant infection but were protected from subsequent lethal wild-type WNV challenge. Compared to responses in young mice, the NS4B-P38G mutant triggered higher inflammatory cytokine and interleukin-10 (IL-10) production, a delayed γδ T cell expansion, and lower antibody and WNV-specific T cell responses in old mice. Toll-like receptor 7 (TLR7) is expressed on multiple types of cells. Impaired TLR7 signaling in old mice led to dendritic cell (DC) antigen-presenting function compromise and a reduced γδ T cell and regulatory T cell (Treg) expansion during NS4B-P38G mutant infection. R848, a TLR7 agonist, decreased host vulnerability in NS4B-P38G-infected old mice by enhancing γδ T cell and Treg expansion and the antigen-presenting capacity of DCs, thereby promoting T cell responses. In summary, our results suggest that dysregulation of TLR7 partially contributes to impaired innate and adaptive T cell responses and an enhanced vulnerability in old mice during WNV NS4B-P38G mutant infection. R848 increases the safety and efficacy during immunization of old mice with the WNV NS4B-P38G mutant. IMPORTANCE: The elderly are known to have enhanced susceptibility to infections and an impaired capacity to respond to vaccination. West Nile virus (WNV), an emerging mosquito-borne flavivirus, has induced severe neurological symptoms more frequently in the elderly population. No vaccines are available for human use. Here, we used an aged mouse model to investigate the protective efficacy of an attenuated WNV, the nonstructural 4B-P38G mutant, which was previously shown to induce no lethality but strong immune responses in young adult mice. Studies that contribute to a mechanistic understanding of immune defects in the elderly will allow the development of strategies to improve responses to infectious diseases and to increase vaccine efficacy and safety in aging individuals.


Assuntos
Imunidade Adaptativa , Resistência à Doença , Imunidade Inata , Linfócitos T/imunologia , Receptor 7 Toll-Like/metabolismo , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/imunologia , Fatores Etários , Animais , Histocitoquímica , Camundongos Endogâmicos C57BL , Análise de Sobrevida , Carga Viral , Febre do Nilo Ocidental/patologia
20.
Brain Behav Immun ; 64: 354-366, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28342781

RESUMO

Transient receptor potential vanilloid type 1 channel (TRPV1), as a ligand-gated non-selective cation channel, has recently been demonstrated to have wide expression in the neuro-immune axis, where its multiple functions occur through regulation of both neuronal and non-neuronal activities. Growing evidence has suggested that TRPV1 is functionally expressed in glial cells, especially in the microglia and astrocytes. Glial cells perform immunological functions in response to pathophysiological challenges through pro-inflammatory or anti-inflammatory cytokines and chemokines in which TRPV1 is involved. Sustaining inflammation might mediate a positive feedback loop of neuroinflammation and exacerbate neurological disorders. Accumulating evidence has suggested that TRPV1 is closely related to immune responses and might be recognized as a molecular switch in the neuroinflammation of a majority of seizures and neurodegenerative diseases. In this review, we evidenced that inflammation modulates the expression and activity of TRPV1 in the central nervous system (CNS) and TRPV1 exerts reciprocal actions over neuroinflammatory processes. Together, the literature supports the hypothesis that TRPV1 may represent potential therapeutic targets in the neuro-immune axis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Encefalite/tratamento farmacológico , Encefalite/imunologia , Encefalite/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Camundongos , Neuroglia/imunologia , Neuroglia/metabolismo , Neurônios/imunologia , Neurônios/metabolismo , Transdução de Sinais , Canais de Cátion TRPV/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA