Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Mar Drugs ; 22(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38921549

RESUMO

Antarctica, one of the most extreme environments on Earth, hosts diverse microbial communities. These microbes have evolved and adapted to survive in these hostile conditions, but knowledge on the molecular mechanisms underlying this process remains limited. The Italian Collection of Antarctic Bacteria (Collezione Italiana Batteri Antartici (CIBAN)), managed by the University of Messina, represents a valuable repository of cold-adapted bacterial strains isolated from various Antarctic environments. In this study, we sequenced and analyzed the genomes of 58 marine Gammaproteobacteria strains from the CIBAN collection, which were isolated during Italian expeditions from 1990 to 2005. By employing genome-scale metrics, we taxonomically characterized these strains and assigned them to four distinct genera: Pseudomonas, Pseudoalteromonas, Shewanella, and Psychrobacter. Genome annotation revealed a previously untapped functional potential, including secondary metabolite biosynthetic gene clusters and antibiotic resistance genes. Phylogenomic analyses provided evolutionary insights, while assessment of cold-shock protein presence shed light on adaptation mechanisms. Our study emphasizes the significance of CIBAN as a resource for understanding Antarctic microbial life and its biotechnological potential. The genomic data unveil new horizons for insight into bacterial existence in Antarctica.


Assuntos
Gammaproteobacteria , Genoma Bacteriano , Genômica , Filogenia , Regiões Antárticas , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Genômica/métodos , Psychrobacter/genética , Psychrobacter/isolamento & purificação , Pseudoalteromonas/genética , Família Multigênica
2.
Appl Microbiol Biotechnol ; 106(21): 7173-7185, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36156161

RESUMO

A synergistic approach using cultivation methods, chemical, and bioinformatic analyses was applied to explore the potential of Pseudoalteromonas sp. S8-8 in the production of extracellular polymeric substances (EPSs) and the possible physiological traits related to heavy metal and/or antibiotic resistance. The effects of different parameters (carbon source, carbon source concentration, temperature, pH and NaCl supplement) were tested to ensure the optimization of growth conditions for EPS production by the strain S8-8. The highest yield of EPS was obtained during growth in culture medium supplemented with glucose (final concentration 2%) and NaCl (final concentration 3%), at 15 °C and pH 7. The EPS was mainly composed of carbohydrates (35%), followed by proteins and uronic acids (2.5 and 2.77%, respectively) and showed a monosaccharidic composition of glucose: mannose: galactosamine: galactose in the relative molar proportions of 1:0.7:0.5:0.4, as showed by the HPAE-PAD analysis. The detection of specific molecular groups (sulfates and uronic acid content) supported the interesting properties of EPSs, i.e. the emulsifying and cryoprotective action, heavy metal chelation, with interesting implication in bioremediation and biomedical fields. The analysis of the genome allowed to identify a cluster of genes involved in cellulose biosynthesis, and two additional gene clusters putatively involved in EPS biosynthesis. KEY POINTS: • A cold-adapted Pseudoalteromonas strain was investigated for EPS production. • The EPS showed emulsifying, cryoprotective, and heavy metal chelation functions. • Three gene clusters putatively involved in EPS biosynthesis were evidenced by genomic insights.


Assuntos
Metais Pesados , Pseudoalteromonas , Pseudoalteromonas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Cloreto de Sódio/metabolismo , Polissacarídeos Bacterianos/metabolismo , Galactose/metabolismo , Manose/metabolismo , Regiões Antárticas , Ácidos Urônicos/metabolismo , Metais Pesados/metabolismo , Sulfatos/metabolismo , Glucose/metabolismo , Carbono/metabolismo , Galactosamina , Celulose/metabolismo
3.
Mol Biol Evol ; 36(3): 562-574, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30608550

RESUMO

Multipartite genomes, containing at least two large replicons, are found in diverse bacteria; however, the advantage of this genome structure remains incompletely understood. Here, we perform comparative genomics of hundreds of finished ß-proteobacterial genomes to gain insights into the role and emergence of multipartite genomes. Almost all essential secondary replicons (chromids) of the ß-proteobacteria are found in the family Burkholderiaceae. These replicons arose from just two plasmid acquisition events, and they were likely stabilized early in their evolution by the presence of core genes. On average, Burkholderiaceae genera with multipartite genomes had a larger total genome size, but smaller chromosome, than genera without secondary replicons. Pangenome-level functional enrichment analyses suggested that interreplicon functional biases are partially driven by the enrichment of secondary replicons in the accessory pangenome fraction. Nevertheless, the small overlap in orthologous groups present in each replicon's pangenome indicated a clear functional separation of the replicons. Chromids appeared biased to environmental adaptation, as the functional categories enriched on chromids were also overrepresented on the chromosomes of the environmental genera (Paraburkholderia and Cupriavidus) compared with the pathogenic genera (Burkholderia and Ralstonia). Using ancestral state reconstruction, it was predicted that the rate of accumulation of modern-day genes by chromids was more rapid than the rate of gene accumulation by the chromosomes. Overall, the data are consistent with a model where the primary advantage of secondary replicons is in facilitating increased rates of gene acquisition through horizontal gene transfer, consequently resulting in replicons enriched in genes associated with adaptation to novel environments.


Assuntos
Burkholderiaceae/genética , Genoma Bacteriano , Replicon , Adaptação Biológica/genética , Transferência Genética Horizontal , Tamanho do Genoma , Seleção Genética
4.
BMC Microbiol ; 18(1): 198, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482178

RESUMO

BACKGROUND: Klebsiella oxytoca DSM 29614 - isolated from acid mine drainages - grows anaerobically using Fe(III)-citrate as sole carbon and energy source, unlike other enterobacteria and K. oxytoca clinical isolates. The DSM 29614 strain is multi metal resistant and produces metal nanoparticles that are embedded in its very peculiar capsular exopolysaccharide. These metal nanoparticles were effective as antimicrobial and anticancer compounds, chemical catalysts and nano-fertilizers. RESULTS: The DSM 29614 strain genome was sequenced and analysed by a combination of in silico procedures. Comparative genomics, performed between 85 K. oxytoca representatives and K. oxytoca DSM 29614, revealed that this bacterial group has an open pangenome, characterized by a very small core genome (1009 genes, about 2%), a high fraction of unique (43,808 genes, about 87%) and accessory genes (5559 genes, about 11%). Proteins belonging to COG categories "Carbohydrate transport and metabolism" (G), "Amino acid transport and metabolism" (E), "Coenzyme transport and metabolism" (H), "Inorganic ion transport and metabolism" (P), and "membrane biogenesis-related proteins" (M) are particularly abundant in the predicted proteome of DSM 29614 strain. The results of a protein functional enrichment analysis - based on a previous proteomic analysis - revealed metabolic optimization during Fe(III)-citrate anaerobic utilization. In this growth condition, the observed high levels of Fe(II) may be due to different flavin metal reductases and siderophores as inferred form genome analysis. The presence of genes responsible for the synthesis of exopolysaccharide and for the tolerance to heavy metals was highlighted too. The inferred genomic insights were confirmed by a set of phenotypic tests showing specific metabolic capability in terms of i) Fe2+ and exopolysaccharide production and ii) phosphatase activity involved in precipitation of metal ion-phosphate salts. CONCLUSION: The K. oxytoca DSM 29614 unique capabilities of using Fe(III)-citrate as sole carbon and energy source in anaerobiosis and tolerating diverse metals coincides with the presence at the genomic level of specific genes that can support i) energy metabolism optimization, ii) cell protection by the biosynthesis of a peculiar exopolysaccharide armour entrapping metal ions and iii) general and metal-specific detoxifying activities by different proteins and metabolites.


Assuntos
Compostos Férricos/metabolismo , Klebsiella oxytoca/genética , Klebsiella oxytoca/isolamento & purificação , Nanopartículas Metálicas/química , Águas Residuárias/microbiologia , Anaerobiose , Ácido Cítrico/metabolismo , Compostos Férricos/química , Genoma Bacteriano , Genômica , Klebsiella oxytoca/classificação , Klebsiella oxytoca/metabolismo , Mineração , Filogenia
5.
BMC Genomics ; 18(1): 834, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084524

RESUMO

BACKGROUND: Antibiotic resistance is a major problem for human health. Multidrug resistance efflux pumps, especially those of the Resistance-Nodulation-Cell Division (RND) family, are major contributors to high-level antibiotic resistance in Gram-negative bacteria. Most bacterial genomes contain several copies of the different classes of multidrug resistance efflux pumps. Gene duplication and gain of function by the duplicate copies of multidrug resistance efflux pump genes plays a key role in the expansion and diversification of drug-resistance mechanisms. RESULTS: We used two members of the Burkholderia RND superfamily as models to understand how duplication events affect the antibiotic resistance of these strains. First, we analyzed the conservation and distribution of these two RND systems and their regulators across the Burkholderia genus. Through genetic manipulations, we identified both the exact substrate range of these transporters and their eventual interchangeability. We also performed a directed evolution experiment, combined with next generation sequencing, to evaluate the role of antibiotics in the activation of the expression of these systems. Together, our results indicate that the first step to diversify the functions of these pumps arises from changes in their regulation (subfunctionalization) instead of functional mutations. Further, these pumps could rewire their regulation to respond to antibiotics, thus maintaining high genomic plasticity. CONCLUSIONS: Studying the regulatory network that controls the expression of the RND pumps will help understand and eventually control the development and expansion of drug resistance.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Farmacorresistência Bacteriana Múltipla , Burkholderia/genética , Ordem dos Genes , Genoma Bacteriano , Genômica/métodos , Humanos , Testes de Sensibilidade Microbiana , Mutação , Óperon , Filogenia , Plasmídeos
6.
BMC Genomics ; 18(1): 93, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28095778

RESUMO

BACKGROUND: Pseudoalteromonas is a genus of ubiquitous marine bacteria used as model organisms to study the biological mechanisms involved in the adaptation to cold conditions. A remarkable feature shared by these bacteria is their ability to produce secondary metabolites with a strong antimicrobial and antitumor activity. Despite their biotechnological relevance, representatives of this genus are still lacking (with few exceptions) an extensive genomic characterization, including features involved in the evolution of secondary metabolites production. Indeed, biotechnological applications would greatly benefit from such analysis. RESULTS: Here, we analyzed the genomes of 38 strains belonging to different Pseudoalteromonas species and isolated from diverse ecological niches, including extreme ones (i.e. Antarctica). These sequences were used to reconstruct the largest Pseudoalteromonas pangenome computed so far, including also the two main groups of Pseudoalteromonas strains (pigmented and not pigmented strains). The downstream analyses were conducted to describe the genomic diversity, both at genus and group levels. This allowed highlighting a remarkable genomic heterogeneity, even for closely related strains. We drafted all the main evolutionary steps that led to the current structure and gene content of Pseudoalteromonas representatives. These, most likely, included an extensive genome reduction and a strong contribution of Horizontal Gene Transfer (HGT), which affected biotechnologically relevant gene sets and occurred in a strain-specific fashion. Furthermore, this study also identified the genomic determinants related to some of the most interesting features of the Pseudoalteromonas representatives, such as the production of secondary metabolites, the adaptation to cold temperatures and the resistance to abiotic compounds. CONCLUSIONS: This study poses the bases for a comprehensive understanding of the evolutionary trajectories followed in time by this peculiar bacterial genus and for a focused exploitation of their biotechnological potential.


Assuntos
Evolução Molecular , Genoma Bacteriano , Pseudoalteromonas/genética , Regiões Antárticas , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Bases de Dados Genéticas , Transferência Genética Horizontal , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Pseudoalteromonas/classificação , Metabolismo Secundário/genética
7.
Therapie ; 72(1): 135-143, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28139283

RESUMO

The way patients and their caregivers share information on various online platforms about health topics and their own experiential knowledge presents new potential environments for research, particularly as concerns health products. The information provided individually and voluntarily by patients who are members of these online communities is a new resource for identifying and understanding precisely how health products are used, assessing their effectiveness, quantifying potential adverse effects in real-life situations, detecting subtle signs that are significant for experts in pharmacovigilance and addiction studies, and developing new assessment tools to help form new working hypotheses. How patients freely express their experiences and feelings and the reality of what they share also opens the way for societal research into health products, a field that is still under-explored. Well-established regulations govern research into health products, which uses resources and methodologies that have changed little over the years. However, the development of online communities of patients presents new possibilities in this field. The challenge we face today is defining their place among traditional research techniques. This place cannot be accepted by all stakeholders unless we first establish a firm understanding of the advantages, limitations, and constraints of these communities. The round table on this topic endeavoured to: explore these issues and develop a better understanding of the phenomenon and the different varieties of online communities and networks for patients; identify possible advantages, special features, and methodological, regulatory, and ethical limitations that researchers currently face; and finally, to put forward the first recommendations in this growing field of research.


Assuntos
Informação de Saúde ao Consumidor , Internet , Mídias Sociais , Humanos , Apoio Social
8.
Environ Microbiol ; 17(3): 751-66, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24889559

RESUMO

The Antarctic strain Pseudoalteromonas haloplanktis TAC125 is one of the model organisms of cold-adapted bacteria and is currently exploited as a new alternative expression host for numerous biotechnological applications. Here, we investigated several metabolic features of this strain through in silico modelling and functional integration of -omics data. A genome-scale metabolic model of P. haloplanktis TAC125 was reconstructed, encompassing information on 721 genes, 1133 metabolites and 1322 reactions. The predictive potential of this model was validated against a set of experimentally determined growth rates and a large dataset of growth phenotypic data. Furthermore, evidence synthesis from proteomics, phenomics, physiology and metabolic modelling data revealed possible drawbacks of cold-dependent changes in gene expression on the overall metabolic network of P. haloplanktis TAC125. These included, for example, variations in its central metabolism, amino acid degradation and fatty acid biosynthesis. The genome-scale metabolic model described here is the first one reconstructed so far for an Antarctic microbial strain. It allowed a system-level investigation of variations in cellular metabolic fluxes following a temperature downshift. It represents a valuable platform for further investigations on P. haloplanktis TAC125 cellular functional states and for the design of more focused strategies for its possible biotechnological exploitation.


Assuntos
Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Regiões Antárticas , Temperatura Baixa , Perfilação da Expressão Gênica , Genoma Bacteriano/genética , Modelos Genéticos , Proteômica , Temperatura
9.
BMC Psychiatry ; 15: 65, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25886006

RESUMO

BACKGROUND: Olanzapine long-acting injection (LAI) for the treatment of schizophrenia was associated with a cluster of symptoms termed post-injection delirium/sedation syndrome (PDSS) in a small percentage (~2%) of patients during clinical trials. The objective of this analysis was to evaluate the rate and clinical characteristics of PDSS since olanzapine LAI entered commercial use. METHODS: Cases of PDSS were identified from all reported adverse events during worldwide commercial use of olanzapine LAI through to 1 March 2014. Data sources included two ongoing post-marketing safety studies as well as spontaneously reported adverse events from routine clinical practice over a 5-year period (1 March 2009 to 1 March 2014). RESULTS: A total of 338 PDSS events were identified. Of these, 91% occurred within 1 hour of injection, and 52% of these occurred within 15 minutes. None of the PDSS events in this analysis were fatal, and most resolved within 72 hours. The most common symptoms (occurring in >30% of cases) were sedation (61%), confusion (56%), dysarthria (54%), somnolence (46%), dizziness (45%) and disorientation (35%). Overall, PDSS occurred with approximately 0.07% of injections and in 0.46-1.03% of patients (reporting and incidence rates from spontaneous reports and post-marketing safety studies, respectively). CONCLUSIONS: The PDSS events reported during routine clinical use of olanzapine LAI are generally similar in incidence and presentation to those reported in clinical trials. Caution should be applied when interpreting spontaneously reported rates of adverse events, however, due to potential under-reporting. Implemented risk-minimisation activities may contribute substantially to the identification and appropriate management of patients with PDSS in clinical practice.


Assuntos
Antipsicóticos/efeitos adversos , Benzodiazepinas/efeitos adversos , Delírio/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Inconsciência/induzido quimicamente , Adulto , Antipsicóticos/administração & dosagem , Benzodiazepinas/administração & dosagem , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/uso terapêutico , Distúrbios do Sono por Sonolência Excessiva/induzido quimicamente , Tontura/induzido quimicamente , Disartria/induzido quimicamente , Feminino , Humanos , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Olanzapina , Fatores de Risco , Síndrome
10.
Genomics ; 103(2-3): 229-38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24576463

RESUMO

Using a computational pipeline based on similarity networks reconstruction we analysed the 1133 genes of the Burkholderia vietnamiensis (Bv) G4 five plasmids, showing that gene and operon duplication played an important role in shaping the plasmid architecture. Several single/multiple duplications occurring at intra- and/or interplasmids level involving 253 paralogous genes (stand-alone, clustered or operons) were detected. An extensive gene/operon exchange between plasmids and chromosomes was also disclosed. The larger the plasmid, the higher the number and size of paralogous fragments. Many paralogs encoded mobile genetic elements and duplicated very recently, suggesting that the rearrangement of the Bv plastic genome is ongoing. Concerning the "molecular habitat" and the "taxonomical status" (the Preferential Organismal Sharing) of Bv plasmid genes, most of them have been exchanged with other plasmids of bacteria belonging (or phylogenetically very close) to Burkholderia, suggesting that taxonomical proximity of bacterial strains is a crucial issue in plasmid-mediated gene exchange.


Assuntos
Burkholderia/genética , Rearranjo Gênico , Genes Bacterianos , Óperon , Filogenia , Plasmídeos/genética , Análise de Sequência de DNA/métodos , Burkholderia/classificação , DNA Bacteriano/genética
11.
Extremophiles ; 18(1): 35-49, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24150693

RESUMO

Microorganisms from Antarctica have evolved particular strategies to cope with cold. Moreover, they have been recently reported as producers of antimicrobial compounds, which inhibit the growth of other bacteria. In this work we characterized from different viewpoints the Gillisia sp. CAL575 strain, a psychrotrophic bacterium that produces microbial volatile organic compounds involved in the growth inhibition of Burkholderia cepacia complex members. Sequencing and analysis of the whole genome of Gillisia sp. CAL575 revealed that it includes genes that are involved in secondary metabolite production, adaptation to cold conditions, and different metabolic pathways for the production of energy. All these features make Gillisia sp. CAL575 a possible tool for biotechnology.


Assuntos
Antibacterianos/farmacologia , Flavobacteriaceae/genética , Genoma Bacteriano , Fenótipo , Compostos Orgânicos Voláteis/farmacologia , Adaptação Fisiológica , Complexo Burkholderia cepacia/efeitos dos fármacos , Temperatura Baixa , Flavobacteriaceae/química , Flavobacteriaceae/metabolismo
12.
Appl Microbiol Biotechnol ; 97(3): 1299-315, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22290652

RESUMO

The alteration of the organic matter (OM) and the composition of bacterial community in microbial fuel cells (MFCs) supplied with soil (S) and a composted organic fertilizer (A) was examined at the beginning and at the end of 3 weeks of incubation under current-producing as well as no-current-producing conditions. Denaturing gradient gel electrophoresis revealed a significant alteration of the microbial community structure in MFCs generating electricity as compared with no-current-producing MFCs. The genetic diversity of cultivable bacterial communities was assessed by random amplified polymorphic DNA (RAPD) analysis of 106 bacterial isolates obtained by using both generic and elective media. Sequencing of the 16S rRNA genes of the more representative RAPD groups indicated that over 50.4% of the isolates from MFCs fed with S were Proteobacteria, 25.1% Firmicutes, and 24.5% Actinobacteria, whereas in MFCs supplied with A 100% of the dominant species belonged to γ-Proteobacteria. The chemical analysis performed by fractioning the OM and using thermal analysis showed that the amount of total organic carbon contained in the soluble phase of the electrochemically active chambers significantly decreased as compared to the no-current-producing systems, whereas the OM of the solid phase became more humified and aromatic along with electricity generation, suggesting a significant stimulation of a humification process of the OM. These findings demonstrated that electroactive bacteria are commonly present in aerobic organic substrates such as soil or a fertilizer and that MFCs could represent a powerful tool for exploring the mineralization and humification processes of the soil OM.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biota , Fertilizantes , Compostos Orgânicos/análise , Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Eletricidade , Variação Genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA
13.
BMC Psychiatry ; 13: 79, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23510483

RESUMO

BACKGROUND: One of the major issues in clinical practice is the accurate differential diagnosis between mixed states and depression, often leading to inappropriate prescriptions of antidepressants in mixed states, and as a consequence, increasing the risk of manic switch and suicide. In order to better define the spectrum of mixed states, it may be useful to develop a dimensional approach. In this context, the MAThyS (Multidimensional Assessment of Thymic States) scale was built to assess activation/inhibition levels in all bipolar mood episodes, and to determine whether a clinical description in terms of activation/inhibition can help better define bipolar states with which both manic and depressive symptoms are associated. The aim of this paper is the validation of the MAThyS scale in 141 bipolar patients in acute states (manic, hypomanic, mixed, or depressive). METHODS: The validation of the MAThyS scale was the primary outcome of this 24-week, phase III, open-label, olanzapine single-arm clinical trial. Principal component, factorial analysis, and Cronbach's coefficient calculation (internal consistency) were performed. Concurrent validity (correlations with 17-item Hamilton Depression Rating Scale [HAMD-17], Hamilton Anxiety Rating Scale [HAMA], and Young Mania Rating Scale [YMRS]) and responsiveness to the clinical intervention were assessed (change in MAThyS scale and effect size) at 6 and 24 weeks. RESULTS: Scree plot of eigenvalues identified a 2-dimension structure ("activation/inhibition level" and "emotional component"). Psychometric properties were good: Cronbach's coefficient was >0.9. Concurrent validity was good with low correlation (-0.19) with the HAMA scale and a higher correlation at baseline with the YMRS (0.72) and HAMD-17(-0.43). As expected, the activation state was predominant in manic, hypomanic, and mixed states while inhibition was predominant in depressive states. MAThyS score improvement was observed (effect size: -0.3 at 6 and 24 weeks). CONCLUSIONS: The MAThyS demonstrated good psychometric properties. The MAThyS scale may help clinicians to better discriminate and follow bipolar episodes, especially the broad spectrum of mixed episodes.


Assuntos
Transtorno Bipolar/diagnóstico , Antipsicóticos/uso terapêutico , Benzodiazepinas/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Depressão/diagnóstico , Análise Fatorial , Humanos , Masculino , Pessoa de Meia-Idade , Olanzapina , Análise de Componente Principal , Escalas de Graduação Psiquiátrica , Psicometria , Reprodutibilidade dos Testes
14.
Antibiotics (Basel) ; 12(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37237798

RESUMO

The urgent necessity to fight antimicrobial resistance is universally recognized. In the search of new targets and strategies to face this global challenge, a promising approach resides in the study of the cellular response to antimicrobial exposure and on the impact of global cellular reprogramming on antimicrobial drugs' efficacy. The metabolic state of microbial cells has been shown to undergo several antimicrobial-induced modifications and, at the same time, to be a good predictor of the outcome of an antimicrobial treatment. Metabolism is a promising reservoir of potential drug targets/adjuvants that has not been fully exploited to date. One of the main problems in unraveling the metabolic response of cells to the environment resides in the complexity of such metabolic networks. To solve this problem, modeling approaches have been developed, and they are progressively gaining in popularity due to the huge availability of genomic information and the ease at which a genome sequence can be converted into models to run basic phenotype predictions. Here, we review the use of computational modeling to study the relationship between microbial metabolism and antimicrobials and the recent advances in the application of genome-scale metabolic modeling to the study of microbial responses to antimicrobial exposure.

15.
Microb Genom ; 9(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37185344

RESUMO

Multipartite genomes, consisting of more than one replicon, have been found in approximately 10 % of bacteria, many of which belong to the phylum Proteobacteria. Many aspects of their origin and evolution, and the possible advantages related to this type of genome structure, remain to be elucidated. Here, we performed a systematic analysis of the presence and distribution of multipartite genomes in the class Gammaproteobacteria, which includes several genera with diverse lifestyles. Within this class, multipartite genomes are mainly found in the order Alteromonadales (mostly in the genus Pseudoalteromonas) and in the family Vibrionaceae. Our data suggest that the emergence of secondary replicons in Gammaproteobacteria is rare and that they derive from plasmids. Despite their multiple origins, we highlighted the presence of evolutionary trends such as the inverse proportionality of the genome to chromosome size ratio, which appears to be a general feature of bacteria with multipartite genomes irrespective of taxonomic group. We also highlighted some functional trends. The core gene set of the secondary replicons is extremely small, probably limited to essential genes or genes that favour their maintenance in the genome, while the other genes are less conserved. This hypothesis agrees with the idea that the primary advantage of secondary replicons could be to facilitate gene acquisition through horizontal gene transfer, resulting in replicons enriched in genes associated with adaptation to different ecological niches. Indeed, secondary replicons are enriched both in genes that could promote adaptation to harsh environments, such as those involved in antibiotic, biocide and metal resistance, and in functional categories related to the exploitation of environmental resources (e.g. carbohydrates), which can complement chromosomal functions.


Assuntos
Gammaproteobacteria , Sinorhizobium meliloti , Genoma Bacteriano , Plasmídeos/genética , Replicon/genética , Sinorhizobium meliloti/genética , Gammaproteobacteria/genética
16.
mSystems ; 8(2): e0112422, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847563

RESUMO

Microbial communities experience continuous environmental changes, with temperature fluctuations being the most impacting. This is particularly important considering the ongoing global warming but also in the "simpler" context of seasonal variability of sea-surface temperature. Understanding how microorganisms react at the cellular level can improve our understanding of their possible adaptations to a changing environment. In this work, we investigated the mechanisms through which metabolic homeostasis is maintained in a cold-adapted marine bacterium during growth at temperatures that differ widely (15 and 0°C). We have quantified its intracellular and extracellular central metabolomes together with changes occurring at the transcriptomic level in the same growth conditions. This information was then used to contextualize a genome-scale metabolic reconstruction, and to provide a systemic understanding of cellular adaptation to growth at 2 different temperatures. Our findings indicate a strong metabolic robustness at the level of the main central metabolites, counteracted by a relatively deep transcriptomic reprogramming that includes changes in gene expression of hundreds of metabolic genes. We interpret this as a transcriptomic buffering of cellular metabolism, able to produce overlapping metabolic phenotypes, despite the wide temperature gap. Moreover, we show that metabolic adaptation seems to be mostly played at the level of few key intermediates (e.g., phosphoenolpyruvate) and in the cross talk between the main central metabolic pathways. Overall, our findings reveal a complex interplay at gene expression level that contributes to the robustness/resilience of core metabolism, also promoting the leveraging of state-of-the-art multi-disciplinary approaches to fully comprehend molecular adaptations to environmental fluctuations. IMPORTANCE This manuscript addresses a central and broad interest topic in environmental microbiology, i.e. the effect of growth temperature on microbial cell physiology. We investigated if and how metabolic homeostasis is maintained in a cold-adapted bacterium during growth at temperatures that differ widely and that match measured changes on the field. Our integrative approach revealed an extraordinary robustness of the central metabolome to growth temperature. However, this was counteracted by deep changes at the transcriptional level, and especially in the metabolic part of the transcriptome. This conflictual scenario was interpreted as a transcriptomic buffering of cellular metabolism, and was investigated using genome-scale metabolic modeling. Overall, our findings reveal a complex interplay at gene expression level that contributes to the robustness/resilience of core metabolism, also promoting the use of state-of-the-art multi-disciplinary approaches to fully comprehend molecular adaptations to environmental fluctuations.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Temperatura , Metaboloma , Adaptação Fisiológica/genética , Bactérias
17.
J Bacteriol ; 194(17): 4771-2, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22887671

RESUMO

We report the draft genome sequence of Acinetobacter venetianus strain RAG-1(T), which is able to degrade hydrocarbons and to synthesize a powerful biosurfactant (emulsan) that can be employed for oil removal and as an adjuvant for vaccine delivery. The genome sequence of A. venetianus RAG-1(T) might be useful for bioremediation and/or clinical purposes.


Assuntos
Acinetobacter/genética , Genoma Bacteriano , Acinetobacter/classificação , Acinetobacter/isolamento & purificação , Acinetobacter/metabolismo , Sequência de Bases , Mapeamento Cromossômico , DNA Bacteriano/genética , Hidrocarbonetos/metabolismo , Dados de Sequência Molecular , Polissacarídeos Bacterianos/metabolismo , Análise de Sequência de DNA
18.
J Bacteriol ; 194(22): 6334-5, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23105071

RESUMO

Arthrobacter sp. strain TB23 was isolated from the Antarctic sponge Lissodendoryx nobilis. This bacterium is able to produce antimicrobial compounds and volatile organic compounds (VOCs) that inhibit the growth of other Antarctic bacteria and of cystic fibrosis opportunistic pathogens, respectively. Here we report the draft genome sequence of Arthrobacter sp. TB23.


Assuntos
Arthrobacter/classificação , Arthrobacter/genética , Burkholderia cepacia/fisiologia , Fibrose Cística/microbiologia , Genoma Bacteriano , Compostos Orgânicos Voláteis/metabolismo , Regiões Antárticas , Arthrobacter/metabolismo , Dados de Sequência Molecular
20.
Environ Microbiol Rep ; 13(6): 945-954, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34541831

RESUMO

An intricate set of interactions characterizes marine ecosystems. One of the most important is represented by the microbial loop, which includes the exchange of dissolved organic matter (DOM) from phototrophic organisms to heterotrophic bacteria. Here, it can be used as the major carbon and energy source. This interaction is one of the foundations of the entire ocean food-web. The carbon fixed by phytoplankton can be redirected to bacteria in two main ways; either (i) bacteria feed on dead phytoplankton cells or (ii) DOM is actively released by phytoplankton (a process resulting in up to 50% of the fixed carbon leaving the cell). Here, we have set up a co-culture of the diatom Phaeodactylum tricornutum and the chemoheterotrophic bacterium Pseudoalteromonas haloplanktis TAC125 and used this system to study the interactions between these two representatives of the microbial loop. We show that the bacterium can thrive on diatom-derived carbon and that this growth can be sustained by both diatom dead cells and diatom-released compounds. These observations were formalized in a network of putative interactions between P. tricornutum and P. haloplanktis and implemented in a model that reproduces the observed co-culture dynamics, revealing an overall accuracy of our hypotheses in explaining the experimental data.


Assuntos
Diatomáceas , Técnicas de Cocultura , Ecossistema , Processos Heterotróficos , Fitoplâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA