Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 597(7878): 666-671, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34588666

RESUMO

The use of non-fullerene acceptors (NFAs) in organic solar cells has led to power conversion efficiencies as high as 18%1. However, organic solar cells are still less efficient than inorganic solar cells, which typically have power conversion efficiencies of more than 20%2. A key reason for this difference is that organic solar cells have low open-circuit voltages relative to their optical bandgaps3, owing to non-radiative recombination4. For organic solar cells to compete with inorganic solar cells in terms of efficiency, non-radiative loss pathways must be identified and suppressed. Here we show that in most organic solar cells that use NFAs, the majority of charge recombination under open-circuit conditions proceeds via the formation of non-emissive NFA triplet excitons; in the benchmark PM6:Y6 blend5, this fraction reaches 90%, reducing the open-circuit voltage by 60 mV. We prevent recombination via this non-radiative channel by engineering substantial hybridization between the NFA triplet excitons and the spin-triplet charge-transfer excitons. Modelling suggests that the rate of back charge transfer from spin-triplet charge-transfer excitons to molecular triplet excitons may be reduced by an order of magnitude, enabling re-dissociation of the spin-triplet charge-transfer exciton. We demonstrate NFA systems in which the formation of triplet excitons is suppressed. This work thus provides a design pathway for organic solar cells with power conversion efficiencies of 20% or more.

2.
Proc Natl Acad Sci U S A ; 121(11): e2316032121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451945

RESUMO

Nitrogen-vacancy (NV) centers in diamond are a promising platform for nanoscale NMR sensing. Despite significant progress toward using NV centers to detect and localize nuclear spins down to the single spin level, NV-based spectroscopy of individual, intact, arbitrary target molecules remains elusive. Such sensing requires that target molecules are immobilized within nanometers of NV centers with long spin coherence. The inert nature of diamond typically requires harsh functionalization techniques such as thermal annealing or plasma processing, limiting the scope of functional groups that can be attached to the surface. Solution-phase chemical methods can be readily generalized to install diverse functional groups, but they have not been widely explored for single-crystal diamond surfaces. Moreover, realizing shallow NV centers with long spin coherence times requires highly ordered single-crystal surfaces, and solution-phase functionalization has not yet been shown with such demanding conditions. In this work, we report a versatile strategy to directly functionalize C-H bonds on single-crystal diamond surfaces under ambient conditions using visible light, forming C-F, C-Cl, C-S, and C-N bonds at the surface. This method is compatible with NV centers within 10 nm of the surface with spin coherence times comparable to the state of the art. As a proof-of-principle demonstration, we use shallow ensembles of NV centers to detect nuclear spins from surface-bound functional groups. Our approach to surface functionalization opens the door to deploying NV centers as a tool for chemical sensing and single-molecule spectroscopy.

3.
Nature ; 587(7835): 594-599, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33239799

RESUMO

The generation, control and transfer of triplet excitons in molecular and hybrid systems is of great interest owing to their long lifetime and diffusion length in both solid-state and solution phase systems, and to their applications in light emission1, optoelectronics2,3, photon frequency conversion4,5 and photocatalysis6,7. Molecular triplet excitons (bound electron-hole pairs) are 'dark states' because of the forbidden nature of the direct optical transition between the spin-zero ground state and the spin-one triplet levels8. Hence, triplet dynamics are conventionally controlled through heavy-metal-based spin-orbit coupling9-11 or tuning of the singlet-triplet energy splitting12,13 via molecular design. Both these methods place constraints on the range of properties that can be modified and the molecular structures that can be used. Here we demonstrate that it is possible to control triplet dynamics by coupling organic molecules to lanthanide-doped inorganic insulating nanoparticles. This allows the classically forbidden transitions from the ground-state singlet to excited-state triplets to gain oscillator strength, enabling triplets to be directly generated on molecules via photon absorption. Photogenerated singlet excitons can be converted to triplet excitons on sub-10-picosecond timescales with unity efficiency by intersystem crossing. Triplet exciton states of the molecules can undergo energy transfer to the lanthanide ions with unity efficiency, which allows us to achieve luminescent harvesting of the dark triplet excitons. Furthermore, we demonstrate that the triplet excitons generated in the lanthanide nanoparticle-molecule hybrid systems by near-infrared photoexcitation can undergo efficient upconversion via a lanthanide-triplet excitation fusion process: this process enables endothermic upconversion and allows efficient upconversion from near-infrared to visible frequencies in the solid state. These results provide a new way to control triplet excitons, which is essential for many fields of optoelectronic and biomedical research.

4.
Nano Lett ; 23(7): 2563-2569, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36927005

RESUMO

Near-surface negatively charged nitrogen vacancy (NV) centers hold excellent promise for nanoscale magnetic imaging and quantum sensing. However, they often experience charge-state instabilities, leading to strongly reduced fluorescence and NV coherence time, which negatively impact magnetic imaging sensitivity. This occurs even more severely at 4 K and ultrahigh vacuum (UHV, p = 2 × 10-10 mbar). We demonstrate that in situ adsorption of H2O on the diamond surface allows the partial recovery of the shallow NV sensors. Combining these with band-bending calculations, we conclude that controlled surface treatments are essential for implementing NV-based quantum sensing protocols under cryogenic UHV conditions.

5.
Nat Mater ; 21(10): 1150-1157, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35927434

RESUMO

Thermally activated delayed fluorescence enables organic semiconductors with charge transfer-type excitons to convert dark triplet states into bright singlets via reverse intersystem crossing. However, thus far, the contribution from the dielectric environment has received insufficient attention. Here we study the role of the dielectric environment in a range of thermally activated delayed fluorescence materials with varying changes in dipole moment upon optical excitation. In dipolar emitters, we observe how environmental reorganization after excitation triggers the full charge transfer exciton formation, minimizing the singlet-triplet energy gap, with the emergence of two (reactant-inactive) modes acting as a vibrational fingerprint of the charge transfer product. In contrast, the dielectric environment plays a smaller role in less dipolar materials. The analysis of energy-time trajectories and their free-energy functions reveals that the dielectric environment substantially reduces the activation energy for reverse intersystem crossing in dipolar thermally activated delayed fluorescence emitters, increasing the reverse intersystem crossing rate by three orders of magnitude versus the isolated molecule.


Assuntos
Semicondutores , Fluorescência
6.
J Phys Chem A ; 127(21): 4743-4757, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196185

RESUMO

The importance of intermediate triplet states and the nature of excited states has gained interest in recent years for the thermally activated delayed fluorescence (TADF) mechanism. It is widely accepted that simple conversion between charge transfer (CT) triplet and singlet excited states is too crude, and a more complex route involving higher-lying locally excited triplet excited states has to be invoked to witness the magnitude of the rate of reverse inter-system crossing (RISC) rates. The increased complexity has challenged the reliability of computational methods to accurately predict the relative energy between excited states as well as their nature. Here, we compare the results of widely used density functional theory (DFT) functionals, CAM-B3LYP, LC-ωPBE, LC-ω*PBE, LC-ω*HPBE, B3LYP, PBE0, and M06-2X, against a wavefunction-based reference method, Spin-Component Scaling second-order approximate Coupled Cluster (SCS-CC2), in 14 known TADF emitters possessing a diversity of chemical structures. Overall, the use of the Tamm-Dancoff Approximation (TDA) together with CAM-B3LYP, M06-2X, and the two ω-tuned range-separated functionals LC-ω*PBE and LC-ω*HPBE demonstrated the best agreement with SCS-CC2 calculations in predicting the absolute energy of the singlet S1, and triplet T1 and T2 excited states and their energy differences. However, consistently across the series and irrespective of the functional or the use of TDA, the nature of T1 and T2 is not as accurately captured as compared to S1. We also investigated the impact of the optimization of S1 and T1 excited states on ΔEST and the nature of these states for three different functionals (PBE0, CAM-B3LYP, and M06-2X). We observed large changes in ΔEST using CAM-B3LYP and PBE0 functionals associated with a large stabilization of T1 with CAM-B3LYP and a large stabilization of S1 with PBE0, while ΔEST is much less affected considering the M06-2X functional. The nature of the S1 state barely evolves after geometry optimization essentially because this state is CT by nature for the three functionals tested. However, the prediction of the T1 nature is more problematic since these functionals for some compounds interpret the nature of T1 very differently. SCS-CC2 calculations on top of the TDA-DFT optimized geometries lead to a large variation in terms of ΔEST and the excited-state nature depending on the chosen functionals, further stressing the large dependence of the excited-state features on the excited-state geometries. The presented work highlights that despite good agreement of energies, the description of the exact nature of the triplet states should be undertaken with caution.

7.
J Phys Chem A ; 126(51): 9709-9718, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36520596

RESUMO

We present an alternative, memory-efficient, Schmidt decomposition-based description of the inherently bipartite restricted active space (RAS) scheme, which can be implemented effortlessly within the density matrix renormalization group (DMRG) method via the dynamically extended active space procedure. Benchmark calculations are compared against state-of-the-art results of C2 and Cr2, which are notorious for their multireference character. Our results for ground and excited states together with spectroscopic constants demonstrate that the proposed novel approach, dubbed as DMRG-RAS, which is variational and free of uncontrolled method errors, has the potential to outperfom conventional methods for strongly correlated molecules.

8.
Angew Chem Int Ed Engl ; 59(8): 3156-3160, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31670891

RESUMO

New symmetric and unsymmetric B,N,B-doped benzo[4]helicenes 3-6 a/b have been achieved in good yields, using a three-step process, starting from N(tolyl)3 in a highly divergent manner (7 examples). A borinic acid functionalized 1,4-B,N-anthracene 1 was found to display unprecedented reactivity, acting as a convenient and highly effective precursor for selective formation of bromo-substituted B,N,B-benzo[4]helicenes 2 a/2 b via intramolecular borylation and sequential B-Mes bond cleavage in the presence of BBr3 . Subsequent reaction of 2 a/2 b with Ar-Li provided a highly effective toolbox for the preparation of symmetrically/unsymmetrically functionalized B,N,B-helicenes. Their high photoluminescence quantum yields along with the small ΔEST suggest their potential as thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs).

9.
J Chem Phys ; 143(7): 074109, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26298117

RESUMO

The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the "exact" scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the "exact" calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.

10.
J Chem Phys ; 142(18): 184902, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25978909

RESUMO

Both the device composition and fabrication process are well-known to crucially affect the power conversion efficiency of polymer solar cells. Major advances have recently been achieved through the development of novel device materials and inkjet printing technologies, which permit to improve their durability and performance considerably. In this work, we demonstrate the usefulness of a recently developed field-based multiscale solar-cell algorithm to investigate the influence of the material characteristics, like, e.g., electrode surfaces, polymer architectures, and impurities in the active layer, as well as post-production treatments, like, e.g., electric field alignment, on the photovoltaic performance of block-copolymer solar-cell devices. Our study reveals that a short exposition time of the polymer bulk heterojunction to the action of an external electric field can lead to a low photovoltaic performance due to an incomplete alignment process, leading to undulated or disrupted nanophases. With increasing exposition time, the nanophases align in direction to the electric field lines, resulting in an increase of the number of continuous percolation paths and, ultimately, in a reduction of the number of exciton and charge-carrier losses. Moreover, we conclude by modifying the interaction strengths between the electrode surfaces and active layer components that a too low or too high affinity of an electrode surface to one of the components can lead to defective contacts, causing a deterioration of the device performance. Finally, we infer from the study of block-copolymer nanoparticle systems that particle impurities can significantly affect the nanostructure of the polymer matrix and reduce the photovoltaic performance of the active layer. For a critical volume fraction and size of the nanoparticles, we observe a complete phase transformation of the polymer nanomorphology, leading to a drop of the internal quantum efficiency. For other particle-numbers and -sizes, we observe only a local perturbation of the nanostructure, diminishing the number of continuous percolation paths to the electrodes and, therefore, reducing the device performance. From these investigations, we conclude that our multiscale solar-cell algorithm is an effective approach to investigate the impact of device materials and post-production treatments on the photovoltaic performance of polymer solar cells.

12.
J Chem Phys ; 138(9): 094901, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23485320

RESUMO

Flexible photovoltaic devices possess promising perspectives in opto-electronic technologies, where high mobility and/or large-scale applicability are important. However, their usefulness in such applications is currently still limited due to the low level of optimization of their performance and durability. For the improvement of these properties, a better understanding and control of small-scale annihilation phenomena involved in the photovoltaic process, such as exciton loss and charge carrier loss, is necessary, which typically implicates multiple length- and time-scales. Here, we study the causes for their occurrence on the example of nanostructured diblock- and triblock-copolymer systems by making use of a novel solar-cell simulation algorithm and explore new routes to optimize their photovoltaic properties. A particular focus is set on the investigation of exciton and charge carrier loss phenomena and their dependence on the inter-monomeric interaction strength, chain architecture, and external mechanical loading. Our simulation results reveal that in the regime from low up to intermediate χ-parameters an increasing number of continuous percolation paths is created. In this parameter range, the internal quantum efficiency (IQE) increases up to a maximum, characterized by a minimum in the number of charge losses due to charge recombination. In the regime of high χ-parameters both block-copolymer systems form nanostructures with a large number of bottlenecks and dead ends. These lead to a large number of charge losses due to charge recombination, charge trapping, and a deteriorated exciton dissociation, resulting in a significant drop in the IQE. Moreover, we find that the photovoltaic performance of the triblock-copolymer material decreases with increasing mechanical loading, caused by a growing number of charge losses due to charge recombination and charge accumulation. Finally, we demonstrate that the process of charge trapping in defects can be reversed by changing the polarity of the electrodes, which confers these materials the ability to be used as charge storage media.


Assuntos
Fontes de Energia Elétrica , Modelos Químicos , Nanotecnologia , Polímeros/química , Energia Solar
13.
Phys Rev E ; 107(1-1): 014304, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797895

RESUMO

Neural networks have proven to be remarkably successful for a wide range of complicated tasks, from image recognition and object detection to speech recognition and machine translation. One of their successes lies in their ability to predict future dynamics given a suitable training data set. Previous studies have shown how echo state networks (ESNs), a type of recurrent neural networks, can successfully predict both short-term and long-term dynamics of even chaotic systems. This study shows that, remarkably, ESNs can successfully predict dynamical behavior that is qualitatively different from any behavior contained in their training set. Evidence is provided for a fluid dynamics problem where the flow can transition between laminar (ordered) and turbulent (seemingly disordered) regimes. Despite being trained on the turbulent regime only, ESNs are found to predict the existence of laminar behavior. Moreover, the statistics of turbulent-to-laminar and laminar-to-turbulent transitions are also predicted successfully. The utility of ESNs in acting as early-warning generators for transition is discussed. These results are expected to be widely applicable to data-driven modeling of temporal behavior in a range of physical, climate, biological, ecological, and finance models characterized by the presence of tipping points and sudden transitions between several competing states.

14.
ACS Nano ; 17(11): 10474-10485, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37212793

RESUMO

Quantum sensing with spin defects in diamond, such as the nitrogen vacancy (NV) center, enables the detection of various chemical species on the nanoscale. Molecules or ions with unpaired electronic spins are typically probed by their influence on the NV center's spin relaxation. Whereas it is well-known that paramagnetic ions reduce the NV center's relaxation time (T1), here we report on the opposite effect for diamagnetic ions. We demonstrate that millimolar concentrations of aqueous diamagnetic electrolyte solutions increase the T1 time of near-surface NV center ensembles compared to pure water. To elucidate the underlying mechanism of this surprising effect, single and double quantum NV experiments are performed, which indicate a reduction of magnetic and electric noise in the presence of diamagnetic electrolytes. In combination with ab initio simulations, we propose that a change in the interfacial band bending due to the formation of an electric double layer leads to a stabilization of fluctuating charges at the interface of an oxidized diamond. This work not only helps to understand noise sources in quantum systems but could also broaden the application space of quantum sensors toward electrolyte sensing in cell biology, neuroscience, and electrochemistry.

15.
J Chem Phys ; 136(19): 194102, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22612075

RESUMO

The photoelectric power conversion efficiency of polymer solar cells is till now, compared to conventional inorganic solar cells, still relatively low with maximum values ranging from 7% to 8%. This essentially relates to the existence of exciton and charge carrier loss phenomena, reducing the performance of polymer solar cells significantly. In this paper we introduce a new computer simulation technique, which permits to explore the causes of the occurrence of such phenomena at the nanoscale and to design new photovoltaic materials with optimized opto-electronic properties. Our approach consists in coupling a mesoscopic field-theoretic method with a suitable dynamic Monte Carlo algorithm, to model the elementary photovoltaic processes. Using this algorithm, we investigate the influence of structural characteristics and different device conditions on the exciton generation and charge transport efficiencies in case of a novel nanostructured polymer blend. More specifically, we find that the disjunction of continuous percolation paths leads to the creation of dead ends, resulting in charge carrier losses through charge recombination. Moreover, we observe that defects are characterized by a low exciton dissociation efficiency due to a high charge accumulation, counteracting the charge generation process. From these observations, we conclude that both the charge carrier loss and the exciton loss phenomena lead to a dramatic decrease in the internal quantum efficiency. Finally, by analyzing the photovoltaic behavior of the nanostructures under different circuit conditions, we demonstrate that charge injection significantly determines the impact of the defects on the solar cell performance.


Assuntos
Polímeros/química , Pontos Quânticos , Energia Solar , Luz Solar , Simulação por Computador , Fontes de Energia Elétrica , Eletrônica , Desenho de Equipamento , Modelos Químicos
16.
J Phys Chem Lett ; 13(14): 3150-3157, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35362989

RESUMO

Ultraviolet (UV) quantum emitters in hexagonal boron nitride (hBN) have generated considerable interest due to their outstanding optical response. Recent experiments have identified a carbon impurity as a possible source of UV single-photon emission. Here, on the basis of first-principles calculations, we systematically evaluate the ability of substitutional carbon defects to develop the UV color centers in hBN. Of 17 defect configurations under consideration, we particularly emphasize the carbon ring defect (6C), for which the calculated zero-phonon line agrees well the experimental 4.1 eV emission signal. We also compare the optical properties of 6C with those of other relevant defects, thereby outlining the key differences in the emission mechanism. Our findings provide new insights into the strong response of this color center to external perturbations and pave the way to a robust identification of the particular carbon substitutional defects by spectroscopic methods.

17.
J Chem Theory Comput ; 18(8): 4903-4918, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35786892

RESUMO

With the surge of interest in multiresonant thermally activated delayed fluorescent (MR-TADF) materials, it is important that there exist computational methods to accurately model their excited states. Here, building on our previous work, we demonstrate how the spin-component scaling second-order approximate coupled-cluster (SCS-CC2), a wavefunction-based method, is robust at predicting the ΔEST (i.e., the energy difference between the lowest singlet S1 and triplet T1 excited states) of a large number of MR-TADF materials, with a mean average deviation (MAD) of 0.04 eV compared to experimental data. Time-dependent density functional theory calculations with the most common DFT functionals as well as the consideration of the Tamm-Dancoff approximation (TDA) consistently predict a much larger ΔEST as a result of a poorer account of Coulomb correlation as compared to SCS-CC2. Very interestingly, the use of a metric to assess the importance of higher order excitations in the SCS-CC2 wavefunctions shows that Coulomb correlation effects are substantially larger in the lowest singlet compared to the corresponding triplet and need to be accounted for a balanced description of the relevant electronic excited states. This is further highlighted with coupled cluster singles-only calculations, which predict very different S1 energies as compared to SCS-CC2 while T1 energies remain similar, leading to very large ΔEST, in complete disagreement with the experiments. We compared our SCS-CC2/cc-pVDZ with other wavefunction approaches, namely, CC2/cc-pVDZ and SOS-CC2/cc-pVDZ leading to similar performances. Using SCS-CC2, we investigate the excited-state properties of MR-TADF emitters showcasing large ΔET2T1 for the majority of emitters, while π-electron extension emerges as the best strategy to minimize ΔEST. We also employed SCS-CC2 to evaluate donor-acceptor systems that contain a MR-TADF moiety acting as the acceptor and show that the broad emission observed for some of these compounds arises from the solvent-promoted stabilization of a higher-lying charge-transfer singlet state (S2). This work highlights the importance of using wavefunction methods in relation to MR-TADF emitter design and associated photophysics.

18.
J Phys Chem Lett ; 11(11): 4503-4510, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32419458

RESUMO

Stacked two-dimensional (2D) heterostructures are evolving as the "next-generation" optoelectronic materials because of the possibility of designing atomically thin devices with outstanding characteristics. However, most of the existing 2D heterostructures are governed by weak van der Waals interlayer interactions that, as often is the case, exert limited impact on the resulting properties of heterostructures relative to their constituting components. In this work, we investigate the optoelectronic properties of a novel class of 2D MP3 (M = Ge and Sn) materials featuring strong interlayer interactions, applying a robust theoretical framework combining density functional theory and many-body perturbation theory. We demonstrate that the remarkable intrinsic vertical strain (of ∼40% relative to the monolayers) promotes the exfoliation of these materials into bilayers and profoundly impacts their electronic structure, charge transport, and optical properties. Most strikingly, we observe that the strong interlayer hybridization indicates continuous optical absorption across the entire visible range that, together with high charge carrier mobility, makes these 2D MP3 heterostructures attractive for photoconversion applications.

19.
Nat Commun ; 10(1): 597, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723203

RESUMO

Unlike conventional thermally activated delayed fluorescence chromophores, boron-centered azatriangulene-like molecules combine a small excited-state singlet-triplet energy gap with high oscillator strengths and minor reorganization energies. Here, using highly correlated quantum-chemical calculations, we report this is driven by short-range reorganization of the electron density taking place upon electronic excitation of these multi-resonant structures. Based on this finding, we design a series of π-extended boron- and nitrogen-doped nanographenes as promising candidates for efficient thermally activated delayed fluorescence emitters with concomitantly decreased singlet-triplet energy gaps, improved oscillator strengths and core rigidity compared to previously reported structures, permitting both emission color purity and tunability across the visible spectrum.

20.
Adv Mater ; 29(18)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28247435

RESUMO

Irradiation of 2D sheets of transition metal dichalcogenides with ion beams has emerged as an effective approach to engineer chemically active defects in 2D materials. In this context, argon-ion bombardment has been utilized to introduce sulfur vacancies in monolayer molybdenum disulfide (MoS2 ). However, a detailed understanding of the effects of generated defects on the functional properties of 2D MoS2 is still lacking. In this work, the correlation between critical electronic device parameters and the density of sulfur vacancies is systematically investigated through the fabrication and characterization of back-gated monolayer MoS2 field-effect transistors (FETs) exposed to a variable fluence of low-energy argon ions. The electrical properties of pristine and ion-irradiated FETs can be largely improved/recovered by exposing the devices to vapors of short linear thiolated molecules. Such a solvent-free chemical treatment-carried out strictly under inert atmosphere-rules out secondary healing effects induced by oxygen or oxygen-containing molecules. The results provide a guideline to design monolayer MoS2 optoelectronic devices with a controlled density of sulfur vacancies, which can be further exploited to introduce ad hoc molecular functionalities by means of thiol chemistry approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA