Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(2): 971-990, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166114

RESUMO

Global resource extraction raises concerns about environmental pressures and the security of mineral supply. Strategies to address these concerns depend on robust information on natural resource endowments, and on suitable methods to monitor and model their changes over time. However, current mineral resources and reserves reporting and accounting workflows are poorly suited for addressing mineral depletion or answering questions about the long-term sustainable supply. Our integrative review finds that the lack of a robust theoretical concept and framework for mass-balance (MB)-consistent geological stock accounting hinders systematic industry-government data integration, resource governance, and strategy development. We evaluate the existing literature on geological stock accounting, identify shortcomings of current monitoring of mine production, and outline a conceptual framework for MB-consistent system integration based on material flow analysis (MFA). Our synthesis shows that recent developments in Earth observation, geoinformation management, and sustainability reporting act as catalysts that make MB-consistent geological stock accounting increasingly feasible. We propose first steps for its implementation and anticipate that our perspective as "resource realists" will facilitate the integration of geological and anthropogenic material systems, help secure future mineral supply, and support the global sustainability transition.


Assuntos
Conservação dos Recursos Naturais , Minerais , Conservação dos Recursos Naturais/métodos
2.
Environ Sci Technol ; 53(19): 11541-11551, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31479264

RESUMO

Platinum, as a key catalytic material, is important for the global green transition due both to its current main use in autocatalysts and its increasing use in emerging and renewable energy technologies such as fuel cells and electrolyzers. In this study, we developed a dynamic material flow analysis model to characterize the global platinum cycle between 1975 and 2016 and to develop scenarios for future global platinum demand to 2050. Our results show that the autocatalyst and jewelry uses represent the most primary platinum use and possess the highest platinum stocks in use by 2016; however, when closed loop recycling is considered, the gross platinum demand from the glass industry would be the largest. Many socioeconomic (e.g., population and car ownership) and technological (e.g., engine and energy technologies) factors will affect the future demand for platinum in a global green transition. Our analysis concludes that, only in high demand scenarios and when fuel cell market penetration is high compared to the expected, the aggregate demand to 2050 will exceed the 2016 global platinum reserves. Improving the end of life collection and recycling rates would be important to address potential future supply risks due to geopolitical reasons. These demand scenarios and further mapping of the global platinum value chain can help inform government and industry policies on transportation and energy transition, platinum supply risk mitigation, and recycling capacity planning and technology development.


Assuntos
Platina , Reciclagem , Indústrias , Tecnologia , Meios de Transporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA