Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 217(Pt 8): 1297-306, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24744424

RESUMO

When exposed to low temperatures, many insect species enter a reversible comatose state (chill coma), which is driven by a failure of neuromuscular function. Chill coma and chill coma recovery have been associated with a loss and recovery of ion homeostasis (particularly extracellular [K(+)], [K(+)]o) and accordingly onset of chill coma has been hypothesized to result from depolarization of membrane potential caused by loss of ion homeostasis. Here, we examined whether onset of chill coma is associated with a disturbance in ion balance by examining the correlation between disruption of ion homeostasis and onset of chill coma in locusts exposed to cold at varying rates of cooling. Chill coma onset temperature changed maximally 1°C under different cooling rates and marked disturbances of ion homeostasis were not observed at any of the cooling rates. In a second set of experiments, we used isolated tibial muscle to determine how temperature and [K(+)]o, independently and together, affect tetanic force production. Tetanic force decreased by 80% when temperature was reduced from 23°C to 0.5°C, while an increase in [K(+)]o from 10 mmol l(-1) to 30 mmol l(-1) at 23°C caused a 40% reduction in force. Combining these two stressors almost abolished force production. Thus, low temperature alone may be responsible for chill coma entry, rather than a disruption of extracellular K(+) homeostasis. As [K(+)] also has a large effect on tetanic force production, it is hypothesized that recovery of [K(+)]o following chill coma could be important for the time to recovery of normal neuromuscular function.


Assuntos
Temperatura Baixa , Homeostase , Locusta migratoria/fisiologia , Potássio/metabolismo , Animais , Espaço Extracelular/metabolismo , Feminino , Masculino , Potenciais da Membrana , Fenômenos Fisiológicos Musculoesqueléticos , Equilíbrio Hidroeletrolítico
2.
Br J Pharmacol ; 179(10): 2175-2192, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34623632

RESUMO

BACKGROUND AND PURPOSE: Acute respiratory distress syndrome (ARDS) is characterized by pulmonary oedema and severe hypoxaemia. We investigated whether genetic deficit or blockade of calcium-activated potassium (KCa 3.1) channels would counteract pulmonary oedema and hypoxaemia in ventilator-induced lung injury, an experimental model for ARDS. EXPERIMENTAL APPROACH: KCa 3.1 channel knockout (Kccn4-/- ) mice were exposed to ventilator-induced lung injury. Control mice exposed to ventilator-induced lung injury were treated with the KCa 3.1 channel inhibitor, senicapoc. The outcomes were oxygenation (PaO2 /FiO2 ratio), lung compliance, lung wet-to-dry weight and protein and cytokines in bronchoalveolar lavage fluid (BALF). KEY RESULTS: Ventilator-induced lung injury resulted in lung oedema, decreased lung compliance, a severe drop in PaO2 /FiO2 ratio, increased protein, neutrophils and tumour necrosis factor-alpha (TNF-α) in BALF from wild-type mice compared with Kccn4-/- mice. Pretreatment with senicapoc (10-70 mg·kg-1 ) prevented the reduction in PaO2 /FiO2 ratio, decrease in lung compliance, increased protein and TNF-α. Senicapoc (30 mg·kg-1 ) reduced histopathological lung injury score and neutrophils in BALF. After injurious ventilation, administration of 30 mg·kg-1 senicapoc also improved the PaO2 /FiO2 ratio and reduced lung injury score and neutrophils in the BALF compared with vehicle-treated mice. In human lung epithelial cells, senicapoc decreased TNF-α-induced permeability. CONCLUSIONS AND IMPLICATIONS: Genetic deficiency of KCa 3.1 channels and senicapoc improved the PaO2 /FiO2 ratio and decreased the cytokines after a ventilator-induced lung injury. Moreover, senicapoc directly affects lung epithelial cells and blocks neutrophil infiltration in the injured lung. These findings indicate that blocking KCa 3.1 channels is a potential treatment in ARDS-like disease.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Acetamidas , Animais , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Pulmão/metabolismo , Camundongos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Compostos de Tritil/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
3.
Front Pharmacol ; 11: 619152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643042

RESUMO

Endothelial cell dysfunction and fibrosis are associated with worsening of the prognosis in patients with cardiovascular disease. Pirfenidone has a direct antifibrotic effect, but vasodilatation may also contribute to the effects of pirfenidone. Therefore, in a first study we investigated the mechanisms involved in the relaxant effect of pirfenidone in rat intrapulmonary arteries and coronary arteries from normal mice. Then in a second study, we investigated whether pirfenidone restores endothelial function in the aorta and mesenteric arteries from diabetic animals. From 16-18-week old normal male C57BL/6 mice and normoglycemic (db/db+), and type 2 diabetic (db/db) male and female mice, arteries were mounted in microvascular isometric myographs for functional studies, and immunoblotting was performed. In rat pulmonary arteries and mouse coronary arteries, pirfenidone induced relaxations, which were inhibited in preparations without endothelium. In mouse coronary arteries, pirfenidone relaxation was inhibited in the presence of a nitric oxide (NO) synthase inhibitor, NG-nitro-l-arginine (L-NOARG), a blocker of large-conductance calcium-activated potassium channels (BKCa), iberiotoxin, and a blocker of KV7 channels, XE991. Patch clamp studies in vascular smooth muscle revealed pirfenidone increased iberiotoxin-sensitive current. In the aorta and mesenteric small arteries from diabetic db/db mice relaxations induced by the endothelium-dependent vasodilator, acetylcholine, were markedly reduced compared to db/db + mice. Pirfenidone enhanced the relaxations induced by acetylcholine in the aorta from diabetic male and female db/db mice. An opener of KV7 channels, flupirtine, had the same effect as pirfenidone. XE991 reduced the effect of pirfenidone and flupirtine and further reduced acetylcholine relaxations in the aorta. In the presence of iberiotoxin, pirfenidone still increased acetylcholine relaxation in aorta from db/db mice. Immunoblotting for KV7.4, KV7.5, and BKCa channel subunits were unaltered in aorta from db/db mice. Pirfenidone failed to improve acetylcholine relaxation in mesenteric arteries, and neither changed acetylcholine-induced transient decreases in blood pressure in db/db+ and db/db mice. In conclusion, pirfenidone vasodilates pulmonary and coronary arteries. In coronary arteries from normal mice, pirfenidone induces NO-dependent vasodilatation involving BKCa and KV7 channels. Pirfenidone improves endothelium-dependent vasodilatation in aorta from diabetic animals by a mechanism involving voltage-gated KV7 channels, a mechanism that may contribute to the antifibrotic effect of pirfenidone.

4.
Sci Rep ; 8(1): 921, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343717

RESUMO

Human MCF-7 breast cancer cells were exposed to a Random Positioning Machine (RPM). After 24 hours (h) the cells grew either adherently within a monolayer (AD) or within multicellular spheroids (MCS). AD and MCS populations were separately harvested, their cellular differences were determined performing qPCR on genes, which were differently expressed in AD and MCS cells. Gene array technology was applied to detect RPM-sensitive genes in MCF-7 cells after 24 h. Furthermore, the capability to form multicellular spheroids in vitro was compared with the intracellular distribution of NF-kappaB (NFκB) p65. NFκB was equally distributed in static control cells, but predominantly localized in the cytoplasm in AD cells and nucleus in MCS cells exposed to the RPM. Gene array analyses revealed a more than 2-fold change of only 23 genes including some whose products are affected by oxygen levels or regulate glycolysis. Significant upregulations of the mRNAs of enzymes degrading heme, of ANXA1, ANXA2, CTGF, CAV2 and ICAM1, as well as of FAS, Casp8, BAX, p53, CYC1 and PARP1 were observed in MCS cells as compared with 1g-control and AD cells. An interaction analysis of 47 investigated genes suggested that HMOX-1 and NFκB variants are activated, when multicellular spheroids are formed.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , NF-kappa B/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Fator de Transcrição RelA/metabolismo , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA