Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Neurosci ; 40(17): 3360-3373, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32265259

RESUMO

The Drosophila nervous system is ensheathed by a layer of outer glial cells, the perineurial glia, and a specialized extracellular matrix, the neural lamella. The function of perineurial glial cells and how they interact with the extracellular matrix are just beginning to be elucidated. Integrin-based focal adhesion complexes link the glial membrane to the extracellular matrix, but little is known about integrin's regulators in the glia. The transmembrane Ig domain protein Basigin/CD147/EMMPRIN is highly expressed in the perineurial glia surrounding the Drosophila larval nervous system. Here we show that Basigin associates with integrin at the focal adhesions to uphold the structure of the glia-extracellular matrix sheath. Knockdown of Basigin in perineurial glia using RNAi results in significant shortening of the ventral nerve cord, compression of the glia and extracellular matrix in the peripheral nerves, and reduction in larval locomotion. We determined that Basigin is expressed in close proximity to integrin at the glial membrane, and that expression of the extracellular integrin-binding domain of Basigin is sufficient to rescue peripheral glial compression. We also found that a reduction in expression of integrin at the membrane rescues the ventral nerve cord shortening, peripheral glial compression, and locomotor phenotypes, and that reduction in the integrin-binding protein Talin can partially rescue glial compression. These results identify Basigin as a potential negative regulator of integrin in the glia, supporting proper glial and extracellular matrix ensheathment of the nervous system.SIGNIFICANCE STATEMENT The glial cells and extracellular matrix play important roles in supporting and protecting the nervous system, but the interactions between these components have not been well characterized. Our study identified expression of a conserved Ig superfamily protein, Basigin, at the glial membrane of Drosophila where it associates with the integrin-based focal adhesion complexes to ensure proper ensheathment of the CNS and PNS. Loss of Basigin in the glia results in an overall compression of the nervous system due to integrin dysregulation, which causes locomotor defects in the animals. This underlies the importance of glia-matrix communication for structural and functional support of the nervous system.


Assuntos
Proteínas de Drosophila/metabolismo , Integrinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Neuroglia/metabolismo , Nervos Periféricos/metabolismo , Animais , Adesão Celular/fisiologia , Drosophila melanogaster , Matriz Extracelular/metabolismo , Larva/metabolismo , Locomoção/fisiologia , Neuroglia/citologia , Nervos Periféricos/citologia , Interferência de RNA
2.
J Neurosci ; 36(4): 1151-64, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26818504

RESUMO

The nervous system is surrounded by an extracellular matrix composed of large glycoproteins, including perlecan, collagens, and laminins. Glial cells in many organisms secrete laminin, a large heterotrimeric protein consisting of an α, ß, and γ subunit. Prior studies have found that loss of laminin subunits from vertebrate Schwann cells causes loss of myelination and neuropathies, results attributed to loss of laminin-receptor signaling. We demonstrate that loss of the laminin γ subunit (LanB2) in the peripheral glia of Drosophila melanogaster results in the disruption of glial morphology due to disruption of laminin secretion. Specifically, knockdown of LanB2 in peripheral glia results in accumulation of the ß subunit (LanB1), leading to distended endoplasmic reticulum (ER), ER stress, and glial swelling. The physiological consequences of disruption of laminin secretion in glia included decreased larval locomotion and ultimately lethality. Loss of the γ subunit from wrapping glia resulted in a disruption in the glial ensheathment of axons but surprisingly did not affect animal locomotion. We found that Tango1, a protein thought to exclusively mediate collagen secretion, is also important for laminin secretion in glia via a collagen-independent mechanism. However loss of secretion of the laminin trimer does not disrupt animal locomotion. Rather, it is the loss of one subunit that leads to deleterious consequences through the accumulation of the remaining subunits. SIGNIFICANCE STATEMENT: This research presents a new perspective on how mutations in the extracellular matrix protein laminin cause severe consequences in glial wrapping and function. Glial-specific loss of the ß or γ laminin subunit disrupted glia morphology and led to ER expansion and stress due to retention of other subunits. The retention of the unpaired laminin subunit was key to the glial disruption as loss of Tango1 blocked secretion of the complete laminin trimer but did not lead to glial or locomotion defects. The effects were observed in the perineurial glia that envelope the peripheral and central nervous systems, providing evidence for the importance of this class of glia in supporting nervous system function.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Laminina/metabolismo , Larva/fisiologia , Locomoção/fisiologia , Sistema Nervoso/citologia , Neuroglia/fisiologia , Análise de Variância , Animais , Animais Geneticamente Modificados , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Colágeno/fisiologia , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Laminina/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/crescimento & desenvolvimento , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Interferência de RNA/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA