Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(23): 236601, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563198

RESUMO

Kagome lattice materials have attracted growing interest for their topological properties and flatbands in electronic structure. We present a comprehensive study on the anisotropy and out-of-plane electric transport in Fe_{3}Sn_{2}, a metal with bilayer of Fe kagome planes and with massive Dirac fermions that features high-temperature noncollinear magnetic structure and magnetic skyrmions. For the electrical current path along the c axis, in micron-size crystals, we found a large topological Hall effect over a wide temperature range down to spin-glass state. Twofold and fourfold angular magnetoresistance are observed for different magnetic phases, reflecting the competition of magnetic interactions and magnetic anisotropy in kagome lattice that preserve robust topological Hall effect for inter-kagome bilayer currents. This provides new insight into the anisotropy in Fe_{3}Sn_{2}, of interest in skyrmionic-bubble application-related micron-size devices.

2.
Phys Rev Lett ; 124(13): 137201, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302196

RESUMO

The ternary AMnBi_{2} (A is alkaline as well as rare-earth atom) materials provide an arena for investigating the interplay between low-dimensional magnetism of the antiferromagnetic MnBi layers and the electronic states in the intercalated Bi layers, which harbor relativistic fermions. Here, we report on a comprehensive study of the optical properties and magnetic torque response of Ca_{1-x}Na_{x}MnBi_{2}. Our findings give evidence for a spin canting occurring at T_{s}∼50-100 K. With the support of first-principles calculations we establish a direct link between the spin canting and the reconstruction of the electronic band structure, having immediate implications for the spectral weight reshuffling in the optical response, signaling a partial gapping of the Fermi surface, and the dc transport properties below T_{s}.

3.
Phys Rev Lett ; 123(7): 076602, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31491094

RESUMO

We report on giant thermopower of S=2.5 mV/K in CoSbS single crystals: a material that shows strong high-temperature thermoelectric performance when doped with Ni or Se. Changes of low-temperature thermopower induced by a magnetic field point to the mechanism of electronic diffusion of carriers in the heavy valence band. Intrinsic magnetic susceptibility is consistent with the Kondo-insulatorlike accumulation of electronic states around the gap edges. This suggests that giant thermopower stems from temperature-dependent renormalization of the noninteracting bands and buildup of the electronic correlations on cooling.

4.
Phys Rev Lett ; 122(8): 087201, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932606

RESUMO

Superconductivity in the iron pnictides emerges from metallic parent compounds exhibiting intertwined stripe-type magnetic order and nematic order, with itinerant electrons suggested to be essential for both. Here we use x-ray and neutron scattering to show that a similar intertwined state is realized in semiconducting KFe_{0.8}Ag_{1.2}Te_{2} (K_{5}Fe_{4}Ag_{6}Te_{10}) without itinerant electrons. We find that Fe atoms in KFe_{0.8}Ag_{1.2}Te_{2} form isolated 2×2 blocks, separated by nonmagnetic Ag atoms. Long-range magnetic order sets in below T_{N}≈35 K, with magnetic moments within the 2×2 Fe blocks ordering into the stripe-type configuration. A nematic order accompanies the magnetic transition, manifest as a structural distortion that breaks the fourfold rotational symmetry of the lattice. The nematic orders in KFe_{0.8}Ag_{1.2}Te_{2} and iron pnictide parent compounds are similar in magnitude and in how they relate to the magnetic order, indicating a common origin. Since KFe_{0.8}Ag_{1.2}Te_{2} is a semiconductor without itinerant electrons, this indicates that local-moment magnetic interactions are integral to its magnetic and nematic orders, and such interactions may play a key role in iron-based superconductivity.

5.
Phys Rev Lett ; 117(1): 016601, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27419578

RESUMO

The thermal conductivity κ of the heavy-fermion metal CeCoIn_{5} was measured in the normal and superconducting states as a function of temperature T and magnetic field H, for a current and field parallel to the [100] direction. Inside the superconducting state, when the field is lower than the upper critical field H_{c2}, κ/T is found to increase as T→0, just as in a metal and in contrast to the behavior of all known superconductors. This is due to unpaired electrons on part of the Fermi surface, which dominate the transport above a certain field. The evolution of κ/T with field reveals that the electron-electron scattering (or transport mass m^{⋆}) of those unpaired electrons diverges as H→H_{c2} from below, in the same way that it does in the normal state as H→H_{c2} from above. This shows that the unpaired electrons sense the proximity of the field-tuned quantum critical point of CeCoIn_{5} at H^{⋆}=H_{c2} even from inside the superconducting state. The fact that the quantum critical scattering of the unpaired electrons is much weaker than the average scattering of all electrons in the normal state reveals a k-space correlation between the strength of pairing and the strength of scattering, pointing to a common mechanism, presumably antiferromagnetic fluctuations.

6.
Phys Rev Lett ; 114(24): 247005, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26197000

RESUMO

CeRhIn(5) is an itinerant magnet where the Ce(3+) spins order in a simple helical phase. We investigate the spin excitations and observe sharp spin waves parameterized by a nearest-neighbor exchange, J(RKKY)=0.88±0.05 meV. At higher energies, the spin fluctuations are heavily damped, where single-quasiparticle excitations are replaced by a momentum- and energy-broadened continuum constrained by kinematics of energy and momentum conservation. The delicate energy balance between localized and itinerant characters results in the breakdown of the single-quasiparticle picture in CeRhIn(5).

7.
Phys Rev Lett ; 114(2): 027003, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25635560

RESUMO

The London penetration depth λ(T) was measured in single crystals of Ce_{1-x}R_{x}CoIn_{5}, R=La, Nd, and Yb down to T_{min}≈50 mK (T_{c}/T_{min}∼50) using a tunnel-diode resonator. In the cleanest samples Δλ(T) is best described by the power law Δλ(T)∝T^{n}, with n∼1, consistent with the existence of line nodes in the superconducting gap. Substitutions of Ce with La, Nd, and Yb lead to similar monotonic suppressions of T_{c}; however, the effects on Δλ(T) differ. While La and Nd substitution leads to an increase in the exponent n and saturation at n∼2, as expected for a dirty nodal superconductor, Yb substitution leads to n>3, suggesting a change from nodal to nodeless superconductivity. This superconducting gap structure change happens in the same doping range where changes of the Fermi-surface topology were reported, implying that the nodal structure and Fermi-surface topology are closely linked.

8.
Phys Rev Lett ; 112(7): 077206, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579634

RESUMO

Spin-1/2 Heisenberg antiferromagnets Cs2CuCl4 and Cs2CuBr4 with distorted triangular-lattice structures are studied by means of electron spin resonance spectroscopy in magnetic fields up to the saturation field and above. In the magnetically saturated phase, quantum fluctuations are fully suppressed, and the spin dynamics is defined by ordinary magnons. This allows us to accurately describe the magnetic excitation spectra in both materials and, using the harmonic spin-wave theory, to determine their exchange parameters. The viability of the proposed method was proven by applying it to Cs2CuCl4, yielding J/kB=4.7(2) K, J'/kB=1.42(7) K, [J'/J≃0.30] and revealing good agreement with inelastic neutron-scattering results. For the isostructural Cs2CuBr4, we obtain J/kB=14.9(7) K, J'/kB=6.1(3) K, [J'/J≃0.41], providing exact and conclusive information on the exchange couplings in this frustrated spin system.

9.
Nat Commun ; 14(1): 581, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737608

RESUMO

The mysterious Planckian metal state, showing perfect T-linear resistivity associated with universal scattering rate, 1/τ = αkBT/ℏ with α ~ 1, has been observed in the normal state of various strongly correlated superconductors close to a quantum critical point. However, its microscopic origin and link to quantum criticality remains an outstanding open problem. Here, we observe quantum-critical T/B-scaling of the Planckian metal state in resistivity and heat capacity of heavy-electron superconductor Ce1-xNdxCoIn5 in magnetic fields near the edge of antiferromagnetism at the critical doping xc ~ 0.03. We present clear experimental evidences of Kondo hybridization being quantum critical at xc. We provide a generic microscopic mechanism to qualitatively account for this quantum critical Planckian state within the quasi-two dimensional Kondo-Heisenberg lattice model near Kondo breakdown transition. We find α is a non-universal constant and depends inversely on the square of Kondo hybridization strength.

10.
Phys Rev Lett ; 109(16): 167207, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23215124

RESUMO

Neutron scattering in strong magnetic fields is used to show the spin resonance in superconducting CeCoIn(5) (T(c)=2.3 K) is a doublet. The underdamped resonance (hΓ=0.069±0.019 meV) Zeeman splits into two modes at E(±)=hΩ(0)±αµ(B)µ(0)H with α=0.96±0.05. A linear extrapolation of the lower peak reaches zero energy at 11.2±0.5 T, near the critical field for the incommensurate "Q phase." Kenzelmann et al. [Science 321, 1652 (2008)] This, taken with the integrated weight and polarization of the low-energy mode (E(-)), indicates that the Q phase can be interpreted as a Bose condensate of spin excitons.

11.
Phys Rev Lett ; 109(12): 127201, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23005978

RESUMO

Spin fluctuations are reported near the magnetic field-driven quantum critical point in YbRh(2)Si(2). On cooling, ferromagnetic fluctuations evolve into incommensurate correlations located at q(0) = ±(δ,δ), with δ = 0.14 ± 0.04 r.l.u. At low temperatures, an in-plane magnetic field induces a sharp intradoublet resonant excitation at an energy E(0) = gµ(B)µ(0)H with g = 3.8 ± 0.2. The intensity is localized at the zone center, indicating precession of spin density extending ξ = 6 ± 2 Å beyond the 4f site.

12.
Phys Rev Lett ; 109(25): 256401, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23368482

RESUMO

We report on the emergence of an electronic Griffiths phase in the doped semiconductor FeSb(2), predicted for disordered insulators with random localized moments in the vicinity of a metal-insulator transition. Magnetic, transport, and thermodynamic measurements of Fe(Sb(1-x)Te(x))(2) single crystals show signatures of disorder-induced non-Fermi liquid behavior and a Wilson ratio expected for strong electronic correlations. The electronic Griffiths phase states are found on the metallic boundary between the insulating state (x = 0) and a long-range albeit weak magnetic order (x ≥ 0.075).

13.
Phys Rev Lett ; 108(8): 087002, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22463558

RESUMO

We present small angle neutron scattering studies of the vortex lattice (VL) in CeCoIn5 with magnetic fields applied parallel (H) to the antinodal [100] and nodal [110] directions. For H is parallel to [100], a single VL orientation is observed, while a 90° reorientation transition is found for H is parallel to [110]. For both field orientations and VL configurations we find a distorted hexagonal VL with an anisotropy, Γ=2.0±0.05. The VL form factor shows strong Pauli paramagnetic effects similar to what have previously been reported for H is parallel to [001]. At high fields, above which the upper critical field (H(c2)) becomes a first-order transition, an increased disordering of the VL is observed.

14.
Phys Rev Lett ; 106(24): 246404, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21770585

RESUMO

We report the coexistence of bulk superconductivity with T(c)=3.8 K and charge density wave (CDW) in Cu intercalated quasi-two-dimensional crystals of ZrTe(3). The Cu intercalation results in the expansion of the unit cell orthogonal to the Zr-Zr metal chains and partial filling of CDW energy gap. We present anisotropic parameters of the superconducting state. We also show that the contribution of CDW to the scattering mechanism is anisotropic in the a-b plane. The dominant scattering mechanism in the normal state for both ZrTe(3) and Cu(0.05)ZrTe(3) along the b axis is the electron-electron umklapp scattering.

15.
Phys Rev Lett ; 107(13): 137002, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-22026891

RESUMO

We report structurally tuned superconductivity in a K(x)Fe(2-y)Se(2-z)S(z) (0 ≤ z ≤ 2) phase diagram. Superconducting T(c) is suppressed as S is incorporated into the lattice, eventually vanishing at 80% of S. The magnetic and conductivity properties can be related to stoichiometry on a poorly occupied Fe1 site and the local environment of a nearly fully occupied Fe2 site. The decreasing T(c) coincides with the increasing Fe1 occupancy and the overall increase in Fe stoichiometry from z = 0 to z = 2. Our results indicate that the irregularity of the Fe2-Se/S tetrahedron is an important controlling parameter that can be used to tune the ground state in the new superconductor family.

16.
Phys Rev Lett ; 105(18): 187001, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21231126

RESUMO

CeCoIn5 is a heavy fermion type-II superconductor showing clear signs of Pauli-limited superconductivity. A variety of measurements give evidence for a transition at high magnetic fields inside the superconducting state, when the field is applied either parallel to or perpendicular to the c axis. When the field is perpendicular to the c axis, antiferromagnetic order develops on the high-field side of the transition. This order remains as the field is rotated out of the basal plane, but the associated moment eventually disappears above 17°, indicating that anomalies seen with the field parallel to the c axis are not related to this magnetic order. We discuss the implications of this finding.

17.
Sci Rep ; 10(1): 15602, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973193

RESUMO

Ferromagnetic van der Waals (vdW) insulators are of great scientific interest for their promising applications in spintronics. It has been indicated that in the two materials within this class, CrI[Formula: see text] and VI[Formula: see text], the magnetic ground state, the band gap, and the Fermi level could be manipulated by varying the layer thickness, strain or doping. To understand how these factors impact the properties, a detailed understanding of the electronic structure would be required. However, the experimental studies of the electronic structure of these materials are still very sparse. Here, we present the detailed electronic structure of CrI[Formula: see text] and VI[Formula: see text] measured by angle-resolved photoemission spectroscopy (ARPES). Our results show a band-gap of the order of 1 eV, sharply contrasting some theoretical predictions such as Dirac half-metallicity and metallic phases, indicating that the intra-atomic interaction parameter (U) and spin-orbit coupling (SOC) were not properly accounted for in the calculations. We also find significant differences in the electronic properties of these two materials, in spite of similarities in their crystal structure. In CrI[Formula: see text], the valence band maximum is dominated by the I 5p, whereas in VI[Formula: see text] it is dominated by the V 3d derived states. Our results represent valuable input for further improvements in the theoretical modeling of these systems.

18.
Sci Rep ; 10(1): 1461, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31974495

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
J Phys Condens Matter ; 21(10): 102204, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21817417

RESUMO

Temperature dependence of the London penetration depth λ measured in single crystals of CeCoIn(5) is interpreted as being caused by a strong pair-breaking scattering that makes the superconductivity in this compound gapless. For a gapless d-wave superconductor, we derive λ = λ(0)(1-T(2)/T(c)(2))(-1/2) caused by the combined effect of magnetic and non-magnetic scattering, in excellent agreement with the data in the full temperature range and with the gapless s-wave case of Abrikosov and Gor'kov. We also obtain the slope of the upper critical field at T(c) that compares well with the measured slope.

20.
Sci Rep ; 9(1): 13599, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537855

RESUMO

Two-dimensional (2D) materials with intrinsic ferromagnetism provide unique opportunity to engineer new functionalities in nano-spintronics. One such material is CrI3, showing long-range magnetic order in monolayer with the Curie temperature (Tc) of 45 K. Here we study detailed evolution of magnetic transition and magnetic critical properties in response to systematic reduction in crystal thickness down to 50 nm. Bulk Tc of 61 K is gradually suppressed to 57 K, however, the satellite transition at T * = 45 K is observed layer-independent at fixed magnetic field of 1 kOe. The origin of T * is proposed to be a crossover from pinning to depinning of magnetic domain walls. The reduction of thickness facilitates a field-driven metamagnetic transition around 20 kOe with out-of-plane field, in contrast to the continuous changes with in-plane field. The critical analysis around Tc elucidates the mean-field type interactions in microscale-thick CrI3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA