Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Brain Behav Immun ; 101: 214-230, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35026421

RESUMO

Inflammatory and neuropathic-like components underlie rheumatoid arthritis (RA)-associated pain, and lysophosphatidic acid (LPA) is linked to both joint inflammation in RA patients and to neuropathic pain. Thus, we investigated a role for LPA signalling using the collagen antibody-induced arthritis (CAIA) model. Pain-like behavior during the inflammatory phase and the late, neuropathic-like phase of CAIA was reversed by a neutralizing antibody generated against LPA and by an LPA1/3 receptor inhibitor, but joint inflammation was not affected. Autotaxin, an LPA synthesizing enzyme was upregulated in dorsal root ganglia (DRG) neurons during both CAIA phases, but not in joints or spinal cord. Late-phase pronociceptive neurochemical changes in the DRG were blocked in Lpar1 receptor deficient mice and reversed by LPA neutralization. In vitro and in vivo studies indicated that LPA regulates pain-like behavior via the LPA1 receptor on satellite glia cells (SGCs), which is expressed by both human and mouse SGCs in the DRG. Furthermore, CAIA-induced SGC activity is reversed by phospholipid neutralization and blocked in Lpar1 deficient mice. Our findings suggest that the regulation of CAIA-induced pain-like behavior by LPA signalling is a peripheral event, associated with the DRGs and involving increased pronociceptive activity of SGCs, which in turn act on sensory neurons.


Assuntos
Artrite Experimental , Neuralgia , Animais , Anticorpos , Colágeno , Gânglios Espinais , Humanos , Lisofosfolipídeos , Camundongos , Neuroglia , Células Receptoras Sensoriais
2.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408784

RESUMO

Lysophosphatidic acid (LPA) is a natural bioactive phospholipid with pleiotropic activities affecting multiple tissues, including bone. LPA exerts its biological functions by binding to G-protein coupled LPA receptors (LPA1-6) to stimulate cell migration, proliferation, and survival. It is largely produced by autotaxin (ATX), a secreted enzyme with lysophospholipase D activity that converts lysophosphatidylcholine (LPC) into active LPA. Beyond its enzymatic activity, ATX serves as a docking molecule facilitating the efficient delivery of LPA to its specific cell surface receptors. Thus, LPA effects are the result of local production by ATX in a given tissue or cell type. As a consequence, the ATX/LPA axis should be considered as an entity to better understand their roles in physiology and pathophysiology and to propose novel therapeutic strategies. Herein, we provide not only an extensive overview of the relevance of the ATX/LPA axis in bone cell commitment and differentiation, skeletal development, and bone disorders, but also discuss new working hypotheses emerging from the interplay of ATX/LPA with well-established signaling pathways regulating bone mass.


Assuntos
Doenças Ósseas , Osso e Ossos , Lisofosfolipídeos , Diester Fosfórico Hidrolases , Osso e Ossos/fisiologia , Humanos , Lisofosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo
3.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293074

RESUMO

Metastases are the main cause of death in cancer patients, and platelets are largely known for their contribution in cancer progression. However, targeting platelets is highly challenging given their paramount function in hemostasis. Using a high-throughput screening and platelet-induced breast tumor cell survival (PITCS) assay as endpoint, we identified the widely used anti-asthmatic drugs and cysteinyl leukotriene receptor 1 (CysLT1R) antagonists, zafirlukast and montelukast, as new specific blockers of platelet protumoral action. Here, we show that human MDA-B02 breast cancer cells produce CysLT through mechanisms involving microsomal glutathione-S-transferase 1/2/3 (MGST1/2/3) and that can modulate cancer cell-platelet interactions via platelet-CysLT1R. CysLT1R blockade with zafirlukast decreased platelet aggregation and adhesion on cancer cells and inhibited PITCS, migration, and invasion in vitro. Zafirlukast significantly reduced, by 90%, MDA-B02 cell dissemination to bone in nude mice and reduced by 88% 4T1 spontaneous lung metastasis formation without affecting primary tumor growth. Combined treatment of zafirlukast plus paclitaxel totally inhibited metastasis of 4T1 cells to the lungs. Altogether, our results reveal a novel pathway mediating the crosstalk between cancer cells and platelets and indicate that platelet CysLT1R represents a novel therapeutic target to prevent metastasis without affecting hemostasis.


Assuntos
Antiasmáticos , Neoplasias da Mama , Camundongos , Animais , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Camundongos Nus , Pulmão , Paclitaxel , Transferases , Glutationa
4.
Curr Osteoporos Rep ; 19(6): 553-562, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34773213

RESUMO

PURPOSE OF REVIEW: To describe the methods that can be used to obtain functional and mature osteoclasts from peripheral blood mononuclear cells (PBMCs) and report the data obtained with this model in two peculiar diseases, namely pediatric chronic kidney disease-associated mineral and bone disorders (CKD-MBD) and nephropathic cystinosis. To discuss future research possibilities in the field. RECENT FINDINGS: Bone tissue undergoes continuous remodeling throughout life to maintain bone architecture; it involves two processes: bone formation and bone resorption with the coordinated activity of osteoblasts, osteoclasts, and osteocytes. Animal models fail to fully explain human bone pathophysiology during chronic kidney disease, mainly due to interspecies differences. The development of in vitro models has permitted to mimic human bone-related diseases as an alternative to in vivo models. Since 1997, osteoclasts have been generated in cell cultures, notably when culturing PBMCs with specific growth factors and cytokines (i.e., M-CSF and RANK-L), without the need for osteoblasts or stromal cells. These models may improve the global understanding of bone pathophysiology. They can be been used not only to evaluate the direct effects of cytokines, hormones, cells, or drugs on bone remodeling during CKD-MBD, but also in peculiar genetic renal diseases inducing specific bone impairment.


Assuntos
Doenças Ósseas/metabolismo , Técnicas de Cultura de Células/métodos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Humanos
5.
Blood ; 128(1): 24-31, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27154188

RESUMO

Platelets are essential components of hemostasis. Due to a plethora of factors released on activation, platelet functions are also connected to tumor growth, notably by acting on angiogenesis. It is now well recognized that major roles of platelets in the poor outcome of cancer patients occurs during hematogenous dissemination of cancer cells. In this review, we describe recent insights into the molecular mechanisms supporting the prometastatic activity of platelets. Platelets have been shown to promote survival of circulating tumor cells (CTCs) in the bloodstream by conferring resistance to the shear stress and attack from natural killer cells. Recently, platelets were found to promote and/or maintain the state of epithelial to mesenchymal transition on CTCs through platelet secretion of transforming growth factor ß in response to CTC activation. At a later stage in the metastatic process, platelets promote extravasation and establishment of metastatic cells in distant organs as observed in bone. This particular environment is also the site of hematopoiesis, megakaryocytopoiesis, and platelet production. Increasing the number of megakaryocytes (MKs) in the bone marrow results in a high bone mass phenotype and inhibits skeletal metastasis formation of prostate cancer cells. As a result of their specific location in vascular niches in the bone marrow, MK activity might contribute to the "seed and soil" suitability between CTCs and bone. In conclusion, recent findings have made a great advance in our knowledge on how platelets contribute to the metastatic dissemination of cancer cells and that may support the development of new antimetastasis therapies.


Assuntos
Plaquetas/metabolismo , Neoplasias Ósseas/metabolismo , Transição Epitelial-Mesenquimal , Megacariócitos/metabolismo , Células Neoplásicas Circulantes/metabolismo , Animais , Plaquetas/patologia , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Humanos , Megacariócitos/patologia , Células Neoplásicas Circulantes/patologia
6.
Nephrol Dial Transplant ; 33(9): 1525-1532, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29365190

RESUMO

Background: Bone impairment is a poorly described complication of nephropathic cystinosis (NC). The objectives of this study were to evaluate in vitro effects of cystinosin (CTNS) mutations on bone resorption and of cysteamine treatment on bone cells [namely human osteoclasts (OCs) and murine osteoblasts]. Methods: Human OCs were differentiated from peripheral blood mononuclear cells (PBMCs) of patients and healthy donors (HDs). Cells were treated with increasing doses of cysteamine in PBMCs or on mature OCs to evaluate its impact on differentiation and resorption, respectively. Similarly, cysteamine-treated osteoblasts derived from murine mesenchymal stem cells were assessed for differentiation and activity with toxicity and proliferation assays. Results: CTNS was expressed in human OCs derived from HDs; its expression was regulated during monocyte colony-stimulating factor- and receptor activator of nuclear factor-κB-dependent osteoclastogenesis and required for efficient bone resorption. Cysteamine had no impact on osteoclastogenesis but inhibited in vitro HD osteoclastic resorption; however, NC OC-mediated bone resorption was impaired only at high doses. Only low concentrations of cysteamine (50 µM) stimulated osteoblastic differentiation and maturation, while this effect was no longer observed at higher concentrations (200 µM). Conclusion: CTNS is required for proper osteoclastic activity. In vitro low doses of cysteamine have beneficial antiresorptive effects on healthy human-derived OCs and may partly correct the CTNS-induced osteoclastic dysfunction in patients with NC. Moreover, in vitro low doses of cysteamine also stimulate osteoblastic differentiation and mineralization, with an inhibitory effect at higher doses, likely explaining, at least partly, the bone toxicity observed in patients receiving high doses of cysteamine.


Assuntos
Reabsorção Óssea/metabolismo , Cistinose/fisiopatologia , Síndrome de Fanconi/complicações , Osteoclastos/patologia , Osteogênese/fisiologia , Animais , Reabsorção Óssea/etiologia , Diferenciação Celular , Células Cultivadas , Cistinose/complicações , Síndrome de Fanconi/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Camundongos , Osteoclastos/metabolismo
7.
J Pathol ; 242(1): 73-89, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28207159

RESUMO

Bone metastasis affects >70% of patients with advanced breast cancer. However, the molecular mechanisms underlying this process remain unclear. On the basis of analysis of clinical datasets, and in vitro and in vivo experiments, we report that the ZNF217 oncogene is a crucial mediator and indicator of bone metastasis. Patients with high ZNF217 mRNA expression levels in primary breast tumours had a higher risk of developing bone metastases. MDA-MB-231 breast cancer cells stably transfected with ZNF217 (MDA-MB-231-ZNF217) showed the dysregulated expression of a set of genes with bone-homing and metastasis characteristics, which overlapped with two previously described 'osteolytic bone metastasis' gene signatures, while also highlighting the bone morphogenetic protein (BMP) pathway. The latter was activated in MDA-MB-231-ZNF217 cells, and its silencing by inhibitors (Noggin and LDN-193189) was sufficient to rescue ZNF217-dependent cell migration, invasion or chemotaxis towards the bone environment. Finally, by using non-invasive multimodal in vivo imaging, we found that ZNF217 increases the metastatic growth rate in the bone and accelerates the development of severe osteolytic lesions. Altogether, the findings of this study highlight ZNF217 as an indicator of the emergence of breast cancer bone metastasis; future therapies targeting ZNF217 and/or the BMP signalling pathway may be beneficial by preventing the development of bone metastases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Neoplasias da Mama/genética , Transativadores/genética , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Ósseas/metabolismo , Remodelação Óssea/genética , Neoplasias da Mama/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Camundongos Nus , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Transplante de Neoplasias , RNA Mensageiro/genética , RNA Neoplásico/genética , Transdução de Sinais/genética , Transativadores/biossíntese , Células Tumorais Cultivadas
8.
Blood ; 124(20): 3141-50, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25277122

RESUMO

Autotaxin (ATX), through its lysophospholipase D activity controls physiological levels of lysophosphatidic acid (LPA) in blood. ATX is overexpressed in multiple types of cancers, and together with LPA generated during platelet activation promotes skeletal metastasis of breast cancer. However, the pathophysiological sequelae of regulated interactions between circulating LPA, ATX, and platelets remain undefined in cancer. In this study, we show that ATX is stored in α-granules of resting human platelets and released upon tumor cell-induced platelet aggregation, leading to the production of LPA. Our in vitro and in vivo experiments using human breast cancer cells that do not express ATX (MDA-MB-231 and MDA-B02) demonstrate that nontumoral ATX controls the early stage of bone colonization by tumor cells. Moreover, expression of a dominant negative integrin αvß3-Δ744 or treatment with the anti-human αvß3 monoclonal antibody LM609, completely abolished binding of ATX to tumor cells, demonstrating the requirement of a fully active integrin αvß3 in this process. The present results establish a new mechanism for platelet contribution to LPA-dependent metastasis of breast cancer cells, and demonstrate the therapeutic potential of disrupting the binding of nontumor-derived ATX with the tumor cells for the prevention of metastasis.


Assuntos
Plaquetas/imunologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Integrina alfaVbeta3/imunologia , Diester Fosfórico Hidrolases/imunologia , Animais , Plaquetas/patologia , Neoplasias Ósseas/sangue , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Osso e Ossos/imunologia , Osso e Ossos/patologia , Mama/imunologia , Mama/patologia , Neoplasias da Mama/sangue , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Lisofosfolipídeos/imunologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica/imunologia , Invasividade Neoplásica/patologia , Ativação Plaquetária
9.
Exp Cell Res ; 333(2): 183-189, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25460336

RESUMO

Lysophosphatidic acid (LPA) is a simple lipid with a single fatty acyl chain linked to a glycerophosphate backbone. Despite the simplicity of its structure but owing to its interactions with a series of at least six G protein-coupled receptors (LPA1-6), LPA exerts pleiotropic bioactivities including stimulation of proliferation, migration and survival of many cell types. Autotaxin (ATX) is a unique enzyme with a lysophospholipase D (lysoPLD) activity that is responsible for the levels of LPA in the blood circulation. Both LPA receptor family members and ATX/LysoPLD are aberrantly expressed in many human cancers. This review will present the more striking as well as novel experimental evidences using cell lines, cancer mouse models and transgenic animals identifying the roles for ATX and LPA receptors in cancer progression, tumor cell invasion and metastasis.


Assuntos
Neoplasias Ósseas/metabolismo , Carcinogênese/metabolismo , Lisofosfolipídeos/fisiologia , Diester Fosfórico Hidrolases/fisiologia , Animais , Neoplasias Ósseas/secundário , Humanos , Neovascularização Patológica/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais
10.
J Biol Chem ; 289(10): 6551-6564, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24429286

RESUMO

Lysophosphatidic acid (LPA) is a natural bioactive lipid that acts through six different G protein-coupled receptors (LPA1-6) with pleiotropic activities on multiple cell types. We have previously demonstrated that LPA is necessary for successful in vitro osteoclastogenesis of bone marrow cells. Bone cells controlling bone remodeling (i.e. osteoblasts, osteoclasts, and osteocytes) express LPA1, but delineating the role of this receptor in bone remodeling is still pending. Despite Lpar1(-/-) mice displaying a low bone mass phenotype, we demonstrated that bone marrow cell-induced osteoclastogenesis was reduced in Lpar1(-/-) mice but not in Lpar2(-/-) and Lpar3(-/-) animals. Expression of LPA1 was up-regulated during osteoclastogenesis, and LPA1 antagonists (Ki16425, Debio0719, and VPC12249) inhibited osteoclast differentiation. Blocking LPA1 activity with Ki16425 inhibited expression of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) and dendritic cell-specific transmembrane protein and interfered with the fusion but not the proliferation of osteoclast precursors. Similar to wild type osteoclasts treated with Ki16425, mature Lpar1(-/-) osteoclasts had reduced podosome belt and sealing zone resulting in reduced mineralized matrix resorption. Additionally, LPA1 expression markedly increased in the bone of ovariectomized mice, which was blocked by bisphosphonate treatment. Conversely, systemic treatment with Debio0719 prevented ovariectomy-induced cancellous bone loss. Moreover, intravital multiphoton microscopy revealed that Debio0719 reduced the retention of CX3CR1-EGFP(+) osteoclast precursors in bone by increasing their mobility in the bone marrow cavity. Overall, our results demonstrate that LPA1 is essential for in vitro and in vivo osteoclast activities. Therefore, LPA1 emerges as a new target for the treatment of diseases associated with excess bone loss.


Assuntos
Reabsorção Óssea/patologia , Proteínas de Membrana/metabolismo , Fatores de Transcrição NFATC/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Osteoclastos/patologia , Receptores de Ácidos Lisofosfatídicos/fisiologia , Animais , Células da Medula Óssea/patologia , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/genética , Diferenciação Celular/efeitos dos fármacos , Movimento Celular , Feminino , Isoxazóis/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Ácidos Oleicos/farmacologia , Organofosfatos/farmacologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Propionatos/farmacologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/genética
11.
Biochim Biophys Acta ; 1831(1): 99-104, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22710393

RESUMO

Bone is a common metastatic site for solid cancers. Bone homeostasis is tightly regulated by intimate cross-talks between osteoblast (bone forming cells) and osteoclasts (bone resorbing cells). Once in the bone microenvironment, metastatic cells do not alter bone directly but instead perturb the physiological balance of the bone remodeling process controlled by bone cells. Tumor cells produce growth factors and cytokines stimulating either osteoclast activity leading to osteolytic lesions or osteoblast function resulting in osteoblastic metastases. Growth factors, released from the resorbed bone matrix or throughout osteoblastic bone formation, sustain tumor growth. Therefore, bone metastases are the sites of vicious cycles wherein tumor growth and bone metabolism sustain each other. Lysophosphatidic acid (LPA) promotes the growth of primary tumors and metastatic dissemination of cancer cells. We have shown that by acting on cancer cells via the contribution of blood platelets and the LPA-producing enzyme Autotaxin (ATX), LPA promotes the progression of osteolytic bone metastases in animal models. In the light of recent reports it would appear that the role of LPA in the context of bone metastases is complex involving multiple sources of lipid combined with direct and indirect effects on target cells. This review will present our current knowledge on the LPA/ATX axis involvement in osteolytic and osteoblastic skeletal metastases and will discuss the potential activity of LPA upstream and downstream metastasis seeding of cancer cells to bone as well as its implication in cancer induced bone pain. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Pleiotropia Genética , Lisofosfolipídeos/metabolismo , Animais , Neoplasias Ósseas/complicações , Humanos , Osteoblastos/metabolismo , Osteoblastos/patologia , Dor/etiologia , Dor/metabolismo , Diester Fosfórico Hidrolases/metabolismo
12.
Int J Cancer ; 135(6): 1319-29, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24615579

RESUMO

The clinical efficacy of anti-angiogenic monotherapies in metastatic breast cancer is less than originally anticipated, and it is not clear what the response of bone metastasis to anti-angiogenic therapies is. Here, we examined the impact of neutralizing tumor-derived vascular endothelial growth factor (VEGF) in animal models of subcutaneous tumor growth and bone metastasis formation. Silencing of VEGF expression (Sh-VEGF) in osteotropic human MDA-MB-231/B02 breast cancer cells led to a substantial growth inhibition of subcutaneous Sh-VEGF B02 tumor xenografts, as a result of reduced angiogenesis, when compared to that observed with animals bearing mock-transfected (Sc-VEGF) B02 tumors. However, there was scant evidence that either the silencing of tumor-derived VEGF or the use of a VEGF-neutralizing antibody (bevacizumab) affected B02 breast cancer bone metastasis progression in animals. We also examined the effect of vatalanib (a VEGF receptor tyrosine kinase inhibitor) in this mouse model of bone metastasis. However, vatalanib failed to inhibit bone metastasis caused by B02 breast cancer cells. In sharp contrast, vatalanib in combination with bevacizumab reduced not only bone destruction but also skeletal tumor growth in animals bearing breast cancer bone metastases, when compared with either agent alone. Thus, our study highlights the importance of targeting both the tumor compartment and the host tissue (i.e., skeleton) to efficiently block the development of bone metastasis. We believe this is a crucially important observation as the clinical benefit of anti-angiogenic monotherapies in metastatic breast cancer is relatively modest.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Ósseas/secundário , Neoplasias Ósseas/terapia , Neoplasias da Mama/terapia , Inibidores da Angiogênese/administração & dosagem , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Bevacizumab , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/genética , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Hospedeiro Imunocomprometido , Camundongos , Camundongos Endogâmicos C3H , Osteólise/tratamento farmacológico , Osteólise/patologia , Ftalazinas/administração & dosagem , Gravidez , Piridinas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Transfecção , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Front Pediatr ; 11: 1094705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36861069

RESUMO

Autotaxin (ATX) is a secreted enzyme with a lysophospholipase D activity, mainly secreted by adipocytes and widely expressed. Its major function is to convert lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), an essential bioactive lipid involved in multiple cell processes. The ATX-LPA axis is increasingly studied because of its involvement in numerous pathological conditions, more specifically in inflammatory or neoplastic diseases, and in obesity. Circulating ATX levels gradually increase with the stage of some pathologies, such as liver fibrosis, thus making them a potentially interesting non-invasive marker for fibrosis estimation. Normal circulating levels of ATX have been established in healthy adults, but no data exist at the pediatric age. The aim of our study is to describe the physiological concentrations of circulating ATX levels in healthy teenagers through a secondary analysis of the VITADOS cohort. Our study included 38 teenagers of Caucasian origin (12 males, 26 females). Their median age was 13 years for males and 14 years for females, ranging from Tanner 1 to 5. BMI was at the 25th percentile for males and 54th percentile for females, and median blood pressure was normal. ATX median levels were 1,049 (450-2201) ng/ml. There was no difference in ATX levels between sexes in teenagers, which was in contrast to the male and female differences described in the adult population. ATX levels significantly decreased with age and pubertal status, reaching adult levels at the end of puberty. Our study also suggested positive correlations between ATX levels and blood pressure (BP), lipid metabolism, and bone biomarkers. However, except for LDL cholesterol, these factors were also significantly correlated with age, which might be a confounding factor. Still, a correlation between ATX and diastolic BP was described in obese adult patients. No correlation was found between ATX levels and inflammatory marker C-reactive protein (CRP), Body Mass Index (BMI), and biomarkers of phosphate/calcium metabolism. In conclusion, our study is the first to describe the decline in ATX levels with puberty and the physiological concentrations of ATX levels in healthy teenagers. It will be of utmost importance when performing clinical studies in children with chronic diseases to keep these kinetics in mind, as circulating ATX might become a non-invasive prognostic biomarker in pediatric chronic diseases.

14.
Transl Res ; 251: 2-13, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35724933

RESUMO

Calcium accumulation in atherosclerotic plaques predicts cardiovascular mortality, but the mechanisms responsible for plaque calcification and how calcification impacts plaque stability remain debated. Tissue-nonspecific alkaline phosphatase (TNAP) recently emerged as a promising therapeutic target to block cardiovascular calcification. In this study, we sought to investigate the effect of the recently developed TNAP inhibitor SBI-425 on atherosclerosis plaque calcification and progression. TNAP levels were investigated in ApoE-deficient mice fed a high-fat diet from 10 weeks of age and in plaques from the human ECLAGEN biocollection (101 calcified and 14 non-calcified carotid plaques). TNAP was inhibited in mice using SBI-425 administered from 10 to 25 weeks of age, and in human vascular smooth muscle cells (VSMCs) with MLS-0038949. Plaque calcification was imaged in vivo with 18F-NaF-PET/CT, ex vivo with osteosense, and in vitro with alizarin red. Bone architecture was determined with µCT. TNAP activation preceded and predicted calcification in human and mouse plaques, and TNAP inhibition prevented calcification in human VSMCs and in ApoE-deficient mice. More unexpectedly, TNAP inhibition reduced the blood levels of cholesterol and triglycerides, and protected mice from atherosclerosis, without impacting the skeletal architecture. Metabolomics analysis of liver extracts identified phosphocholine as a substrate of liver TNAP, who's decreased dephosphorylation upon TNAP inhibition likely reduced the release of cholesterol and triglycerides into the blood. Systemic inhibition of TNAP protects from atherosclerosis, by ameliorating dyslipidemia, and preventing plaque calcification.


Assuntos
Aterosclerose , Calcinose , Dislipidemias , Placa Aterosclerótica , Camundongos , Humanos , Animais , Fosfatase Alcalina , Músculo Liso Vascular , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Apolipoproteínas E , Triglicerídeos
15.
Br J Pharmacol ; 179(22): 5036-5055, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-33527344

RESUMO

Cysteinyl leukotrienes (CysLTs) are inflammatory lipid mediators that play a central role in the pathophysiology of several inflammatory diseases. Recently, there has been an increased interest in determining how these lipid mediators orchestrate tumour development and metastasis through promoting a pro-tumour micro-environment. Up-regulation of CysLTs receptors and CysLTs production is found in a number of cancers and has been associated with increased tumorigenesis. Understanding the molecular mechanisms underlying the role of CysLTs and their receptors in cancer progression will help investigate the potential of targeting CysLTs signalling for anti-cancer therapy. This review gives an overview of the biological effects of CysLTs and their receptors, along with current knowledge of their regulation and expression. It also provides a recent update on the molecular mechanisms that have been postulated to explain their role in tumorigenesis and on the potential of anti-CysLTs in the treatment of cancer.


Assuntos
Leucotrienos , Neoplasias , Carcinogênese , Cisteína/metabolismo , Humanos , Leucotrienos/metabolismo , Neoplasias/tratamento farmacológico , Microambiente Tumoral
16.
J Clin Endocrinol Metab ; 107(12): 3275-3286, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36112422

RESUMO

CONTEXT: X-linked hypophosphatemia (XLH) is a rare genetic disease caused by a primary excess of fibroblast growth factor 23 (FGF23). FGF23 has been associated with inflammation and impaired osteoclastogenesis, but these pathways have not been investigated in XLH. OBJECTIVE: This work aimed to evaluate whether XLH patients display peculiar inflammatory profile and increased osteoclastic activity. METHODS: We performed a prospective, multicenter, cross-sectional study analyzing transcript expression of 8 inflammatory markers (Il6, Il8, Il1ß, CXCL1, CCL2, CXCR3, Il1R, Il6R) by real-time quantitative polymerase chain reaction on peripheral blood mononuclear cells (PBMCs) purified from total blood samples extracted from patients and healthy control individuals. The effect of native/active vitamin D on osteoclast formation was also assessed in vitro from XLH patients' PBMCs. RESULTS: In total, 28 XLH patients (17 children, among them 6 undergoing standard of care [SOC] and 11 burosumab therapy) and 19 controls were enrolled. Expression of most inflammatory markers was significantly increased in PBMCs from XLH patients compared to controls. No differences were observed between the burosumab and SOC subgroups. Osteoclast formation was significantly impaired in XLH patients. XLH mature osteoclasts displayed higher levels of inflammatory markers, being however lower in cells derived from the burosumab subgroup (as opposed to SOC). CONCLUSION: We describe for the first time a peculiar inflammatory profile in XLH. Since XLH patients have a propensity to develop arterial hypertension, obesity, and enthesopathies, and because inflammation can worsen these clinical outcomes, we hypothesize that inflammation may play a critical role in these extraskeletal complications of XLH.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Criança , Humanos , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Estudos Prospectivos , Leucócitos Mononucleares/metabolismo , Estudos Transversais , Fatores de Crescimento de Fibroblastos , Biomarcadores , Inflamação
17.
J Pharmacol Exp Ther ; 338(3): 879-89, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21632869

RESUMO

Sphingosine 1-phosphate (S1P) is a phospholipid that binds to a set of G protein-coupled receptors (S1P(1)-S1P(5)) to initiate an array of signaling cascades that affect cell survival, differentiation, proliferation, and migration. On a larger physiological scale, the effects of S1P on immune cell trafficking, vascular barrier integrity, angiogenesis, and heart rate have also been observed. An impetus for the characterization of S1P-initiated signaling effects came with the discovery that FTY720 [fingolimod; 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol] modulates the immune system by acting as an agonist at S1P(1). In the course of structure-activity relationship studies to better understand the functional chemical space around FTY720, we discovered conformationally constrained FTY720 analogs that behave as S1P receptor type-selective antagonists. Here, we present a pharmacological profile of a lead S1P(1/3) antagonist prodrug, 1-(hydroxymethyl)-3-(3-octylphenyl)cyclobutane (VPC03090). VPC03090 is phosphorylated by sphingosine kinase 2 to form the competitive antagonist species 3-(3-octylphenyl)-1-(phosphonooxymethyl)cyclobutane (VPC03090-P) as observed in guanosine 5'-O-(3-[(35)S]thio)triphosphate binding assays, with effects on downstream S1P receptor signaling confirmed by Western blot and calcium mobilization assays. Oral dosing of VPC03090 results in an approximate 1:1 phosphorylated/alcohol species ratio with a half-life of 30 h in mice. Because aberrant S1P signaling has been implicated in carcinogenesis, we applied VPC03090 in an immunocompetent mouse mammary cancer model to assess its antineoplastic potential. Treatment with VPC03090 significantly inhibited the growth of 4T1 primary tumors in mice. This result calls to attention the value of S1P receptor antagonists as not only research tools but also potential therapeutic agents.


Assuntos
Derivados de Benzeno/farmacologia , Ciclobutanos/farmacologia , Pró-Fármacos/farmacologia , Propilenoglicóis/farmacologia , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Esfingosina/análogos & derivados , Animais , Derivados de Benzeno/farmacocinética , Western Blotting , Células CHO , Cálcio/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , Ciclobutanos/farmacocinética , Feminino , Cloridrato de Fingolimode , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Contagem de Linfócitos , Linfopenia/sangue , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pró-Fármacos/farmacocinética , Propilenoglicóis/farmacocinética , Conformação Proteica , Ensaio Radioligante , Esfingosina/farmacocinética , Esfingosina/farmacologia , Relação Estrutura-Atividade
18.
Cells ; 10(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34572146

RESUMO

Bone complications of cystinosis have been recently described. The main objectives of this paper were to determine in vitro the impact of CTNS mutations and cysteamine therapy on human osteoclasts and to carry out a genotype-phenotype analysis related to osteoclastic differentiation. Human osteoclasts were differentiated from peripheral blood mononuclear cells (PBMCs) and were treated with increasing doses of cysteamine (0, 50, 200 µM) and then assessed for osteoclastic differentiation. Results are presented as median (min-max). A total of 17 patients (mainly pediatric) were included, at a median age of 14 (2-61) years, and a eGFR of 64 (23-149) mL/min/1.73 m2. Most patients (71%) were under conservative kidney management (CKM). The others were kidney transplant recipients. Three functional groups were distinguished for CTNS mutations: cystinosin variant with residual cystin efflux activity (RA, residual activity), inactive cystinosin variant (IP, inactive protein), and absent protein (AP). PBMCs from patients with residual cystinosin activity generate significantly less osteoclasts than those obtained from patients of the other groups. In all groups, cysteamine exerts an inhibitory effect on osteoclastic differentiation at high doses. This study highlights a link between genotype and osteoclastic differentiation, as well as a significant impact of cysteamine therapy on this process in humans.


Assuntos
Cisteamina/farmacologia , Cistinose/genética , Osteoclastos/metabolismo , Adolescente , Adulto , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Diferenciação Celular/efeitos dos fármacos , Criança , Pré-Escolar , Cisteamina/metabolismo , Cistinose/metabolismo , Cistinose/fisiopatologia , Feminino , Estudos de Associação Genética/métodos , Genótipo , Humanos , Leucócitos Mononucleares , Masculino , Pessoa de Meia-Idade , Mutação , Osteoclastos/efeitos dos fármacos , Fenótipo
19.
Endocrinology ; 162(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33999998

RESUMO

Tamoxifen is a selective estrogen receptor modulator used to activate the CREERT2 recombinase, allowing tissue-specific and temporal control of the somatic mutagenesis to generate transgenic mice. Studies integrating development and metabolism require a genetic modification induced by a neonatal tamoxifen administration. Here, we investigate the effects of a neonatal tamoxifen administration on energy homeostasis in adult male and female C57BL/6J mice. C57BL/6J male and female mouse pups received a single injection of tamoxifen 1 day after birth (NTT) and were fed a high-fat/high-sucrose diet at 6 weeks of age. We measured weight, body composition, glucose and insulin tolerance, basal metabolism, and tibia length and weight in adult mice. The neonatal tamoxifen administration exerted long-term, sex-dependent effects on energy homeostasis. NTT female mice became overweight and developed impaired glucose control in comparison to vehicle-treated littermates. NTT females exhibited 60% increased fat mass, increased food intake, decreased physical activity and energy expenditure, impaired glucose and insulin tolerance, and fasting hyperglycemia and hyperinsulinemia. In contrast, NTT male mice exhibited a modest amelioration of glucose and insulin tolerance and long-term decreased lean mass linked to decreased bone weight. These results suggest that the neonatal tamoxifen administration exerted a marked and sex-dependent influence on adult energy homeostasis and bone weight and must therefore be used with caution for the development of transgenic mouse models regarding studies on energy homeostasis and bone biology.


Assuntos
Animais Recém-Nascidos/metabolismo , Glicemia/metabolismo , Metabolismo Energético/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Fatores Sexuais , Tamoxifeno/farmacologia , Animais , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Feminino , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Condicionamento Físico Animal , Moduladores Seletivos de Receptor Estrogênico/farmacologia
20.
J Bone Miner Res ; 35(11): 2265-2274, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32598518

RESUMO

Active vitamin D analogs and calcimimetics are the main therapies used for treating secondary hyperparathyroidism (SHPT) in patients with chronic kidney disease (CKD). Peripheral blood mononuclear cells of 19 pediatric patients with CKD1-5D and 6 healthy donors (HD) were differentiated into mature osteoclasts with receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). The effects of single or combined treatment with active vitamin D (1.25-D) and/or calcimimetic KP2326 were evaluated on osteoclastic differentiation and osteoclastic-mediated bone resorption. Although 1.25-D inhibited osteoclastic differentiation, a significant resistance to 1.25-D was observed when glomerular filtration rate decreased. A significant albeit less important inhibitory effect of KP2326 on osteoclastic differentiation was also found both in cells derived from HD and CKD patients, through a putative activation of the Erk pathway. This inhibitory effect was not modified by CKD stage. Combinatorial treatment with 1.25-D and KP2326 did not result in synergistic effects. Last, KP2326 significantly inhibited osteoclast-mediated bone resorption. Both 1.25-D and KP2326 inhibit osteoclastic differentiation, however, to a different extent. There is a progressive resistance to 1.25-D in advanced CKD that is not found with KP2326. KP2326 also inhibits bone resorption. Given that 1.25-D has no effect on osteoclastic resorption activity and that calcimimetics also have direct anabolic effects on osteoblasts, there is an experimental rationale that could favor the use of decreased doses of 1.25-D with low doses of calcimimetics in SHPT in dialysis to improve the underlying osteodystrophy. However, this last point deserves confirmatory clinical studies. © 2020 American Society for Bone and Mineral Research.


Assuntos
Reabsorção Óssea , Diferenciação Celular/efeitos dos fármacos , Insuficiência Renal Crônica , Vitamina D/uso terapêutico , Reabsorção Óssea/tratamento farmacológico , Criança , Humanos , Leucócitos Mononucleares , Fator Estimulador de Colônias de Macrófagos , Osteoclastos , Ligante RANK , Insuficiência Renal Crônica/tratamento farmacológico , Vitamina D/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA