Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 545
Filtrar
1.
J Clin Microbiol ; 62(2): e0114123, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193696

RESUMO

Azole resistance in Aspergillus fumigatus (AFM) is increasing and often associated with cyp51 alterations. We evaluated the activity of isavuconazole and other mold-active azoles against 731 AFM isolates causing invasive aspergillosis collected in Europe (EU; n = 449) and North America (NA; n = 282). Isolates were submitted to CLSI susceptibility testing and epidemiological cutoff value (ECV) criteria. A posaconazole ECV of 0.5 mg/L was used as no CLSI ECV was determined. Azole non-wild-type (NWT) isolates were submitted for cyp51 sequencing by whole genome sequencing. Overall, isavuconazole activity (92.7%/94.0% WT in EU/NA) was comparable to other azoles (WT rate range, 90.9%-96.4%/91.8%-98.6%, respectively), regardless of the region. A total of 79 (10.8%) azole NWT isolates were detected, and similar rates of these isolates were noted in EU (10.7%) and NA (11.0%). Although most AFM were WT to azoles, increasing azole NWT rates were observed in NA (from 6.0% in 2017 to 29.3% in 2021). Azole NWT rates varied from 4.9% (2019) to 20.6% (2018) in EU without an observed trend. cyp51 alterations occurred in 56.3%/54.8% of azole NWT from EU/NA, respectively. The cyp51A TR34/L98H alteration was observed only in EU isolates (72.0% of EU isolates), while cyp51A I242V occurred only in NA isolates (58.3%). Isavuconazole remained active (MIC, ≤1 mg/L) against 18.5/47.1% of azole NWT AFM exhibiting cyp51 alterations in EU/NA, along with voriconazole (29.6/82.4%; MIC, ≤1 mg/L) and posaconazole (48.1/88.2%; MIC, ≤0.5 mg/L). Fourteen different cyp51 alterations were detected in 44 of 79 NWT isolates. The in vitro activity of the azoles varied in AFM that displayed cyp51 alterations. IMPORTANCE A few microbiology laboratories perform antifungal susceptibility testing locally for systemically active antifungal agents. The identification of emerging azole-resistant Aspergillus fumigatus is worrisome. As such, there is a critical role for antifungal surveillance in tracking emerging resistance among both common and uncommon opportunistic fungi. Differences in the regional prevalence and antifungal resistance of these fungi render local epidemiological knowledge essential for the care of patients with a suspected invasive fungal infection.


Assuntos
Aspergillus fumigatus , Infecções Fúngicas Invasivas , Nitrilas , Piridinas , Triazóis , Humanos , Azóis/farmacologia , Antifúngicos/farmacologia , Fungos , Europa (Continente)/epidemiologia , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana , Proteínas Fúngicas/genética
2.
Antimicrob Agents Chemother ; 66(11): e0102822, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36286491

RESUMO

We evaluated the in vitro activity of manogepix and comparator agents against 1,435 contemporary fungal isolates collected worldwide from 73 medical centers in North America, Europe, the Asia-Pacific region, and Latin America during 2020. Of the isolates tested, 74.7% were Candida spp.; 3.7% were non-Candida yeasts, including 27 Cryptococcus neoformans var. grubii (1.9%); 17.1% were Aspergillus spp.; and 4.5% were other molds. All fungal isolates were tested by reference broth microdilution according to CLSI methods. Based on MIC90 values, manogepix (MIC50/MIC90, 0.008/0.06 mg/liter) was 16- to 64-fold more active than anidulafungin, micafungin, and fluconazole against Candida spp. isolates and the most active agent tested. Similarly, manogepix (MIC50/MIC90, 0.5/1 mg/liter) was ≥8-fold more active than anidulafungin, micafungin, and fluconazole against C. neoformans var. grubii. Based on minimum effective concentration for 90% of the isolates tested (MEC90) and MIC90 values, manogepix (MEC90, 0.03 mg/liter) was 16- to 64-fold more potent than itraconazole, posaconazole, and voriconazole (MIC90s, 0.5 to 2 mg/liter) against 246 Aspergillus spp. isolates. Aspergillus fumigatus isolates exhibited a wild-type (WT) phenotype for the mold-active triazoles, including itraconazole (87.0% WT) and voriconazole (96.4% WT). Manogepix was highly active against uncommon species of Candida, non-Candida yeasts, and rare molds, including 11 isolates of Candida auris (MIC50/MIC90, 0.004/0.015 mg/liter) and 12 isolates of Scedosporium spp. (MEC50/MEC90, 0.06/0.12 mg/liter). Additional studies are in progress to evaluate the clinical utility of the manogepix prodrug fosmanogepix in difficult-to-treat resistant fungal infections.


Assuntos
Cryptococcus neoformans , Fluconazol , Anidulafungina/farmacologia , Micafungina/farmacologia , Fluconazol/farmacologia , Voriconazol/farmacologia , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Candida , Aspergillus , Farmacorresistência Fúngica
3.
Artigo em Inglês | MEDLINE | ID: mdl-31182527

RESUMO

Current antifungal agents cover a majority of opportunistic fungal pathogens; however, breakthrough invasive fungal infections continue to occur and increasingly involve relatively uncommon yeasts and molds, which often exhibit decreased susceptibility. APX001A (manogepix) is a first-in-class small-molecule inhibitor of the conserved fungal Gwt1 protein. This enzyme is required for acylation of inositol during glycosylphosphatidylinositol anchor biosynthesis. APX001A is active against the major fungal pathogens, i.e., Candida (except Candida krusei), Aspergillus, and hard-to-treat molds, including Fusarium and Scedosporium In this study, we tested APX001A and comparators against 1,706 contemporary clinical fungal isolates collected in 2017 from 68 medical centers in North America (37.3%), Europe (43.4%), the Asia-Pacific region (12.7%), or Latin America (6.6%). Among the isolates tested, 78.5% were Candida spp., 3.9% were non-Candida yeasts, including 30 (1.8%) Cryptococcus neoformans var. grubii isolates, 14.7% were Aspergillus spp., and 2.9% were other molds. All isolates were tested by CLSI reference broth microdilution. APX001A (MIC50, 0.008 µg/ml; MIC90, 0.06 µg/ml) was the most active agent tested against Candida sp. isolates; corresponding anidulafungin, micafungin, and fluconazole MIC90 values were 16- to 64-fold higher. Similarly, APX001A (MIC50, 0.25 µg/ml; MIC90, 0.5 µg/ml) was ≥8-fold more active than anidulafungin, micafungin, and fluconazole against C. neoformans var. grubii Against Aspergillus spp., AXP001A (50% minimal effective concentration [MEC50], 0.015 µg/ml; MEC90, 0.03 µg/ml) was comparable in activity to anidulafungin and micafungin. Aspergillus isolates (>98%) exhibited a wild-type phenotype for the mold-active triazoles (itraconazole, posaconazole, and voriconazole). APX001A was highly active against uncommon species of Candida, non-Candida yeasts, and rare molds, including 11 isolates of Scedosporium spp. (MEC values, 0.015 to 0.06 µg/ml). APX001A demonstrated potent in vitro activity against recent fungal isolates, including echinocandin- and fluconazole-resistant strains. The extended spectrum of APX001A was also notable for its potency against many less common but antifungal-resistant strains. Further studies are in progress to evaluate the clinical utility of the methyl phosphate prodrug, APX001, in difficult-to-treat resistant fungal infections.


Assuntos
Aminopiridinas/farmacologia , Antifúngicos/farmacologia , Isoxazóis/farmacologia , Anidulafungina/farmacologia , Aspergillus/efeitos dos fármacos , Candida/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Farmacorresistência Fúngica , Fluconazol/farmacologia , Fusarium/efeitos dos fármacos , Micafungina/farmacologia , Testes de Sensibilidade Microbiana , Scedosporium/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-29437624

RESUMO

Estimating epidemiological cutoff endpoints (ECVs/ECOFFS) may be hindered by the overlap of MICs for mutant and nonmutant strains (strains harboring or not harboring mutations, respectively). Posaconazole MIC distributions for the Aspergillus fumigatus species complex were collected from 26 laboratories (in Australia, Canada, Europe, India, South and North America, and Taiwan) and published studies. Distributions that fulfilled CLSI criteria were pooled and ECVs were estimated. The sensitivity of three ECV analytical techniques (the ECOFFinder, normalized resistance interpretation [NRI], derivatization methods) to the inclusion of MICs for mutants was examined for three susceptibility testing methods (the CLSI, EUCAST, and Etest methods). The totals of posaconazole MICs for nonmutant isolates (isolates with no known cyp51A mutations) and mutant A. fumigatus isolates were as follows: by the CLSI method, 2,223 and 274, respectively; by the EUCAST method, 556 and 52, respectively; and by Etest, 1,365 and 29, respectively. MICs for 381 isolates with unknown mutational status were also evaluated with the Sensititre YeastOne system (SYO). We observed an overlap in posaconazole MICs among nonmutants and cyp51A mutants. At the commonly chosen percentage of the modeled wild-type population (97.5%), almost all ECVs remained the same when the MICs for nonmutant and mutant distributions were merged: ECOFFinder ECVs, 0.5 µg/ml for the CLSI method and 0.25 µg/ml for the EUCAST method and Etest; NRI ECVs, 0.5 µg/ml for all three methods. However, the ECOFFinder ECV for 95% of the nonmutant population by the CLSI method was 0.25 µg/ml. The tentative ECOFFinder ECV with SYO was 0.06 µg/ml (data from 3/8 laboratories). Derivatization ECVs with or without mutant inclusion were either 0.25 µg/ml (CLSI, EUCAST, Etest) or 0.06 µg/ml (SYO). It appears that ECV analytical techniques may not be vulnerable to overlap between presumptive wild-type isolates and cyp51A mutants when up to 11.6% of the estimated wild-type population includes mutants.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Mutação/genética , Triazóis/farmacologia , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana , Voriconazol/farmacologia
5.
J Clin Microbiol ; 56(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29848564

RESUMO

Delafloxacin, a recently approved anionic fluoroquinolone, was tested within an international resistance surveillance program. The in vitro susceptibilities of 7,914 indicated pathogens causing acute bacterial skin and skin structure infections (ABSSSI) were determined using Clinical and Laboratory Standards Institute (CLSI) broth microdilution MIC testing methods. The U.S. Food and Drug Administration (FDA) susceptibility testing breakpoints and quality control ranges for routine broth microdilution and disk diffusion methods were confirmed. The delafloxacin MIC50/90 (% susceptibility) results were as follows: Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), 0.008/0.25 µg/ml (92.8%); Staphylococcus lugdunensis, 0.016/0.03 µg/ml (99.3%); Streptococcus pyogenes, 0.016/0.03 µg/ml (100.0%); Streptococcus anginosus group, 0.008/0.016 µg/ml (100.0%); Enterococcus faecalis, 0.12/1 µg/ml (66.2%); and Enterobacteriaceae, 0.12/4 µg/ml (69.5%). The FDA clinical breakpoints were used to assess intermethod test agreement between delafloxacin MIC and disk diffusion methods for the indicated pathogens. The intermethod susceptibility test categorical agreement for delafloxacin was acceptable, with only 0.4% very major, false-susceptible errors among S. aureus strains. Across all FDA-indicated species, the selected breakpoints produced only 0.0 to 1.7% rates of serious (very major and major errors) intermethod error. Quality control ranges for these standardized delafloxacin susceptibility test methods were calculated from three multilaboratory (12 total sites) studies for six control organisms. In conclusion, the application of FDA MIC breakpoints for delafloxacin against contemporary (2014 to 2016) isolates of ABSSSI pathogens provides additional support for the use of delafloxacin in the treatment of adults with ABSSSI. Delafloxacin MIC and disk diffusion susceptibility testing methods have been standardized for clinical application, achieving high intermethod categorical agreement.


Assuntos
Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Testes de Sensibilidade Microbiana/normas , Enterobacteriaceae/efeitos dos fármacos , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Controle de Qualidade , Staphylococcus/efeitos dos fármacos
6.
J Antimicrob Chemother ; 73(suppl_4): iv27-iv30, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29608750

RESUMO

Background: Delay in treatment of candidaemia and invasive candidiasis remains a cause of significant morbidity and mortality in high-risk patients. Widespread empirical utilization of antifungal therapy often occurs in an effort to minimize this risk. Objectives: This study assessed the impact of the T2Candida Panel in a multi-hospital community health system on time to initiation of antifungal therapy in candidaemic patients as well as the utilization of micafungin. Methods: Outcomes were compared between those patients with candidaemia prior to T2Candida implementation and those after implementation. Micafungin utilization for patients with suspected candidaemia/invasive candidiasis was compared with that for patients with a negative T2Candida Panel post-implementation. Results: There was a significant decrease in time to appropriate therapy in the post-T2Candida group (34 versus 6 h, P = 0.0147). Empirical antifungal therapy was avoided in 58.4% of T2Candida-negative patients. Conclusions: These results support the implementation of T2Candida to improve time to appropriate therapy for candidaemic patients while simultaneously expanding antimicrobial stewardship efforts to appropriately utilize antifungals.


Assuntos
Antifúngicos/uso terapêutico , Candida/classificação , Candida/isolamento & purificação , Candidemia/diagnóstico , Candidemia/tratamento farmacológico , Candidíase Invasiva/diagnóstico , Candidíase Invasiva/tratamento farmacológico , Micafungina/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Gestão de Antimicrobianos , Candidemia/diagnóstico por imagem , Candidíase Invasiva/diagnóstico por imagem , Centros Comunitários de Saúde , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
7.
Artigo em Inglês | MEDLINE | ID: mdl-28167542

RESUMO

The in vitro activities of delafloxacin and comparator antimicrobial agents against 6,485 bacterial isolates collected from medical centers in Europe and the United States in 2014 were tested. Delafloxacin was the most potent agent tested against methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus, Streptococcus pneumoniae, viridans group streptococci, and beta-hemolytic streptococci and had activity similar to that of ciprofloxacin and levofloxacin against certain members of the Enterobacteriaceae Overall, the broadest coverage of the tested pathogens (Gram-positive cocci and Gram-negative bacilli) was observed with meropenem and tigecycline in both Europe and the United States. Delafloxacin was shown to be active against organisms that may be encountered in acute bacterial skin and skin structure infections, respiratory infections, and urinary tract infections.


Assuntos
Antibacterianos/farmacologia , Fluoroquinolonas/farmacologia , Europa (Continente) , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Estados Unidos
8.
Antimicrob Agents Chemother ; 60(2): 1079-84, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26643334

RESUMO

The CLSI epidemiological cutoff values (ECVs) of antifungal agents are available for various Candida spp., Aspergillus spp., and the Mucorales. However, those categorical endpoints have not been established for Fusarium spp., mostly due to the difficulties associated with collecting sufficient CLSI MICs for clinical isolates identified according to the currently recommended molecular DNA-PCR-based identification methodologies. CLSI MIC distributions were established for 53 Fusarium dimerum species complex (SC), 10 F. fujikuroi, 82 F. proliferatum, 20 F. incarnatum-F. equiseti SC, 226 F. oxysporum SC, 608 F. solani SC, and 151 F. verticillioides isolates originating in 17 laboratories (in Argentina, Australia, Brazil, Canada, Europe, Mexico, and the United States). According to the CLSI guidelines for ECV setting, ECVs encompassing ≥97.5% of pooled statistically modeled MIC distributions were as follows: for amphotericin B, 4 µg/ml (F. verticillioides) and 8 µg/ml (F. oxysporum SC and F. solani SC); for posaconazole, 2 µg/ml (F. verticillioides), 8 µg/ml (F. oxysporum SC), and 32 µg/ml (F. solani SC); for voriconazole, 4 µg/ml (F. verticillioides), 16 µg/ml (F. oxysporum SC), and 32 µg/ml (F. solani SC); and for itraconazole, 32 µg/ml (F. oxysporum SC and F. solani SC). Insufficient data precluded ECV definition for the other species. Although these ECVs could aid in detecting non-wild-type isolates with reduced susceptibility to the agents evaluated, the relationship between molecular mechanisms of resistance (gene mutations) and MICs still needs to be investigated for Fusarium spp.


Assuntos
Antifúngicos/farmacologia , Fusarium/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , América , Farmacorresistência Fúngica Múltipla , Europa (Continente) , Fusarium/genética , Fusarium/isolamento & purificação , Humanos , Reação em Cadeia da Polimerase/métodos
9.
Antimicrob Agents Chemother ; 58(2): 916-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24277027

RESUMO

Since epidemiological cutoff values (ECVs) using CLSI MICs from multiple laboratories are not available for Candida spp. and the echinocandins, we established ECVs for anidulafungin and micafungin on the basis of wild-type (WT) MIC distributions (for organisms in a species-drug combination with no detectable acquired resistance mechanisms) for 8,210 Candida albicans, 3,102 C. glabrata, 3,976 C. parapsilosis, 2,042 C. tropicalis, 617 C. krusei, 258 C. lusitaniae, 234 C. guilliermondii, and 131 C. dubliniensis isolates. CLSI broth microdilution MIC data gathered from 15 different laboratories in Canada, Europe, Mexico, Peru, and the United States were aggregated to statistically define ECVs. ECVs encompassing 97.5% of the statistically modeled population for anidulafungin and micafungin were, respectively, 0.12 and 0.03 µg/ml for C. albicans, 0.12 and 0.03 µg/ml for C. glabrata, 8 and 4 µg/ml for C. parapsilosis, 0.12 and 0.06 µg/ml for C. tropicalis, 0.25 and 0.25 µg/ml for C. krusei, 1 and 0.5 µg/ml for C. lusitaniae, 8 and 2 µg/ml for C. guilliermondii, and 0.12 and 0.12 µg/ml for C. dubliniensis. Previously reported single and multicenter ECVs defined in the present study were quite similar or within 1 2-fold dilution of each other. For a collection of 230 WT isolates (no fks mutations) and 51 isolates with fks mutations, the species-specific ECVs for anidulafungin and micafungin correctly classified 47 (92.2%) and 51 (100%) of the fks mutants, respectively, as non-WT strains. These ECVs may aid in detecting non-WT isolates with reduced susceptibility to anidulafungin and micafungin due to fks mutations.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Equinocandinas/farmacologia , Proteínas Fúngicas/genética , Lipopeptídeos/farmacologia , Anidulafungina , Candida/classificação , Candida/genética , Candida/isolamento & purificação , Candidíase/epidemiologia , Candidíase/microbiologia , Europa (Continente)/epidemiologia , Expressão Gênica , Humanos , Micafungina , Testes de Sensibilidade Microbiana , Mutação , América do Norte/epidemiologia , América do Sul/epidemiologia
10.
Antimicrob Agents Chemother ; 58(4): 2006-12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24419346

RESUMO

Although epidemiological cutoff values (ECVs) have been established for Candida spp. and the triazoles, they are based on MIC data from a single laboratory. We have established ECVs for eight Candida species and fluconazole, posaconazole, and voriconazole based on wild-type (WT) MIC distributions for isolates of C. albicans (n=11,241 isolates), C. glabrata (7,538), C. parapsilosis (6,023), C. tropicalis (3,748), C. krusei (1,073), C. lusitaniae (574), C. guilliermondii (373), and C. dubliniensis (162). The 24-h CLSI broth microdilution MICs were collated from multiple laboratories (in Canada, Brazil, Europe, Mexico, Peru, and the United States). The ECVs for distributions originating from ≥6 laboratories, which included ≥95% of the modeled WT population, for fluconazole, posaconazole, and voriconazole were, respectively, 0.5, 0.06 and 0.03 µg/ml for C. albicans, 0.5, 0.25, and 0.03 µg/ml for C. dubliniensis, 8, 1, and 0.25 µg/ml for C. glabrata, 8, 0.5, and 0.12 µg/ml for C. guilliermondii, 32, 0.5, and 0.25 µg/ml for C. krusei, 1, 0.06, and 0.06 µg/ml for C. lusitaniae, 1, 0.25, and 0.03 µg/ml for C. parapsilosis, and 1, 0.12, and 0.06 µg/ml for C. tropicalis. The low number of MICs (<100) for other less prevalent species (C. famata, C. kefyr, C. orthopsilosis, C. rugosa) precluded ECV definition, but their MIC distributions are documented. Evaluation of our ECVs for some species/agent combinations using published individual MICs for 136 isolates (harboring mutations in or upregulation of ERG11, MDR1, CDR1, or CDR2) and 64 WT isolates indicated that our ECVs may be useful in distinguishing WT from non-WT isolates.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Fluconazol/farmacologia , Pirimidinas/farmacologia , Triazóis/farmacologia , Testes de Sensibilidade Microbiana , Voriconazol
11.
J Clin Microbiol ; 52(6): 2126-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24719450

RESUMO

A fully automated antifungal susceptibility test system recently updated to reflect the new species-specific clinical breakpoints (CBPs) of fluconazole for Candida (Vitek 2 AF03 yeast susceptibility test; bioMérieux, Inc., Durham, NC) was compared in three different laboratories with the Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution (BMD) method by testing 2 quality control strains, 10 reproducibility strains (4 Candida species and 6 Cryptococcus neoformans strains), and 746 isolates of Candida species (702 isolates, 13 species) and 44 isolates of C. neoformans against fluconazole. Excellent essential agreement (EA) (within 2 dilutions) between the reference and Vitek 2 MICs was observed for fluconazole and Candida species (94.0%). The EA was lower for fluconazole and C. neoformans at 86.4%. The mean times to a result with the Vitek 2 test were 9.1 h for Candida species and 12.1 h for C. neoformans. Categorical agreement (CA) between the two methods was assessed by using the new species-specific CBPs. For less common species without fluconazole CBPs, the epidemiological cutoff values (ECVs) were used to differentiate wild-type (WT; MIC, ≤ ECV) from non-WT (MIC, >ECV) strains. The CAs between the two methods were 92.0% for Candida species (0.3% very major errors [VME] and 2.6% major errors [ME]) and 84.1% for C. neoformans (4.5% VME and 11.4% ME). The updated Vitek 2 AF03 IUO yeast susceptibility system is comparable to the CLSI BMD reference method for testing the susceptibility of clinically important yeasts to fluconazole when using the new (lower) CBPs and ECVs.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Fluconazol/farmacologia , Automação Laboratorial/métodos , Candida/isolamento & purificação , Cryptococcus neoformans/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana/métodos , Fatores de Tempo
13.
Antimicrob Agents Chemother ; 57(8): 3823-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23716059

RESUMO

Epidemiological cutoff values (ECVs) were established for the new triazole isavuconazole and Aspergillus species wild-type (WT) MIC distributions (organisms in a species-drug combination with no detectable acquired resistance mechanisms) that were defined with 855 Aspergillus fumigatus, 444 A. flavus, 106 A. nidulans, 207 A. niger, 384 A. terreus, and 75 A. versicolor species complex isolates; 22 Aspergillus section Usti isolates were also included. CLSI broth microdilution MIC data gathered in Europe, India, Mexico, and the United States were aggregated to statistically define ECVs. ECVs were 1 µg/ml for the A. fumigatus species complex, 1 µg/ml for the A. flavus species complex, 0.25 µg/ml for the A. nidulans species complex, 4 µg/ml for the A. niger species complex, 1 µg/ml for the A. terreus species complex, and 1 µg/ml for the A. versicolor species complex; due to the small number of isolates, an ECV was not proposed for Aspergillus section Usti. These ECVs may aid in detecting non-WT isolates with reduced susceptibility to isavuconazole due to cyp51A (an A. fumigatus species complex resistance mechanism among the triazoles) or other mutations.


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Testes de Sensibilidade Microbiana/normas , Nitrilas/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Aspergilose/microbiologia , Aspergillus/genética , Aspergillus/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Geografia , Humanos , Testes de Sensibilidade Microbiana/métodos , Mutação , Pirimidinas/farmacologia , Valores de Referência , Voriconazol
14.
Antimicrob Agents Chemother ; 57(12): 5836-42, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24018263

RESUMO

Although Clinical and Laboratory Standards Institute (CLSI) clinical breakpoints (CBPs) are available for interpreting echinocandin MICs for Candida spp., epidemiologic cutoff values (ECVs) based on collective MIC data from multiple laboratories have not been defined. While collating CLSI caspofungin MICs for 145 to 11,550 Candida isolates from 17 laboratories (Brazil, Canada, Europe, Mexico, Peru, and the United States), we observed an extraordinary amount of modal variability (wide ranges) among laboratories as well as truncated and bimodal MIC distributions. The species-specific modes across different laboratories ranged from 0.016 to 0.5 µg/ml for C. albicans and C. tropicalis, 0.031 to 0.5 µg/ml for C. glabrata, and 0.063 to 1 µg/ml for C. krusei. Variability was also similar among MIC distributions for C. dubliniensis and C. lusitaniae. The exceptions were C. parapsilosis and C. guilliermondii MIC distributions, where most modes were within one 2-fold dilution of each other. These findings were consistent with available data from the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (403 to 2,556 MICs) for C. albicans, C. glabrata, C. krusei, and C. tropicalis. Although many factors (caspofungin powder source, stock solution solvent, powder storage time length and temperature, and MIC determination testing parameters) were examined as a potential cause of such unprecedented variability, a single specific cause was not identified. Therefore, it seems highly likely that the use of the CLSI species-specific caspofungin CBPs could lead to reporting an excessive number of wild-type (WT) isolates (e.g., C. glabrata and C. krusei) as either non-WT or resistant isolates. Until this problem is resolved, routine testing or reporting of CLSI caspofungin MICs for Candida is not recommended; micafungin or anidulafungin data could be used instead.


Assuntos
Antifúngicos/uso terapêutico , Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Equinocandinas/uso terapêutico , Anidulafungina , Candida/crescimento & desenvolvimento , Candida/isolamento & purificação , Candidíase/microbiologia , Caspofungina , Farmacorresistência Fúngica , Europa (Continente) , Humanos , Lipopeptídeos/uso terapêutico , Micafungina , Testes de Sensibilidade Microbiana/normas , Testes de Sensibilidade Microbiana/estatística & dados numéricos , América do Norte , Variações Dependentes do Observador , América do Sul , Especificidade da Espécie
15.
J Chemother ; 35(8): 689-699, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37746914

RESUMO

To assess oritavancin in vitro activity against clinically relevant Gram-positive pathogens in European (EU) hospitals, a total of 51,531 consecutive and unique clinical isolates collected in 2010-2019 were evaluated. All isolates were tested by CLSI broth microdilution methods. The key resistance phenotypes differed considerably between Eastern Europe (E-EU) and Western Europe (W-EU), respectively: methicillin-resistant (MR) Staphylococcus aureus 27.7%/22.9%; multidrug resistant (MDR) S. aureus, 19.7%/15.2%; MR coagulase-negative staphylococci, 77.3%/61.9%; vancomycin-resistant enterococci (E. faecium), 44.2%/20.9%; and MDR E. faecium, 63.8%/55.4%. There were no substantive differences in oritavancin minimum inhibitory concentration (MIC) values for the different species/organism groups over time or by EU region. Oritavancin inhibited 99.9% and 99.1% of all S. aureus and coagulase-negative staphylococci at 0.12 mg/L, respectively, and all isolates of E. faecalis and E. faecium at ≤0.5 mg/L. Oritavancin susceptibility rates against ß-hemolytic and Viridans group streptococci isolates were 98.1% and 99.4%, respectively. Oritavancin had potent activity in vitro against this contemporary collection of European Gram-positive isolates from 2010 to 2019.


Assuntos
Anti-Infecciosos , Infecções por Bactérias Gram-Positivas , Humanos , Antibacterianos/farmacologia , Staphylococcus aureus , Coagulase , Staphylococcus , Europa (Continente)/epidemiologia , Testes de Sensibilidade Microbiana , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/epidemiologia , Bactérias Gram-Positivas
16.
Antimicrob Agents Chemother ; 56(6): 3107-13, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22391546

RESUMO

Clinical breakpoints (CBPs) are not available for the Cryptococcus neoformans-Cryptococcus gattii species complex. MIC distributions were constructed for the wild type (WT) to establish epidemiologic cutoff values (ECVs) for C. neoformans and C. gattii versus amphotericin B and flucytosine. A total of 3,590 amphotericin B and 3,045 flucytosine CLSI MICs for C. neoformans (including 1,002 VNI isolates and 8 to 39 VNII, VNIII, and VNIV isolates) and 985 and 853 MICs for C. gattii, respectively (including 42 to 259 VGI, VGII, VGIII, and VGIV isolates), were gathered in 9 to 16 (amphotericin B) and 8 to 13 (flucytosine) laboratories (Europe, United States, Australia, Brazil, Canada, India, and South Africa) and aggregated for the analyses. Additionally, 442 amphotericin B and 313 flucytosine MICs measured by using CLSI-YNB medium instead of CLSI-RPMI medium and 237 Etest amphotericin B MICs for C. neoformans were evaluated. CLSI-RPMI ECVs for distributions originating in ≥3 laboratories (with the percentages of isolates for which MICs were less than or equal to ECVs given in parentheses) were as follows: for amphotericin B, 0.5 µg/ml for C. neoformans VNI (97.2%) and C. gattii VGI and VGIIa (99.2 and 97.5%, respectively) and 1 µg/ml for C. neoformans (98.5%) and C. gattii nontyped (100%) and VGII (99.2%) isolates; for flucytosine, 4 µg/ml for C. gattii nontyped (96.4%) and VGI (95.7%) isolates, 8 µg/ml for VNI (96.6%) isolates, and 16 µg/ml for C. neoformans nontyped (98.6%) and C. gattii VGII (97.1%) isolates. Other molecular types had apparent variations in MIC distributions, but the number of laboratories contributing data was too low to allow us to ascertain that the differences were due to factors other than assay variation. ECVs may aid in the detection of isolates with acquired resistance mechanisms.


Assuntos
Anfotericina B/farmacologia , Antibacterianos/farmacologia , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Flucitosina/farmacologia , Testes de Sensibilidade Microbiana
17.
Antimicrob Agents Chemother ; 56(11): 5898-906, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22948877

RESUMO

Epidemiological cutoff values (ECVs) for the Cryptococcus neoformans-Cryptococcus gattii species complex versus fluconazole, itraconazole, posaconazole, and voriconazole are not available. We established ECVs for these species and agents based on wild-type (WT) MIC distributions. A total of 2,985 to 5,733 CLSI MICs for C. neoformans (including isolates of molecular type VNI [MICs for 759 to 1,137 isolates] and VNII, VNIII, and VNIV [MICs for 24 to 57 isolates]) and 705 to 975 MICs for C. gattii (including 42 to 260 for VGI, VGII, VGIII, and VGIV isolates) were gathered in 15 to 24 laboratories (Europe, United States, Argentina, Australia, Brazil, Canada, Cuba, India, Mexico, and South Africa) and were aggregated for analysis. Additionally, 220 to 359 MICs measured using CLSI yeast nitrogen base (YNB) medium instead of CLSI RPMI medium for C. neoformans were evaluated. CLSI RPMI medium ECVs for distributions originating from at least three laboratories, which included ≥95% of the modeled WT population, were as follows: fluconazole, 8 µg/ml (VNI, C. gattii nontyped, VGI, VGIIa, and VGIII), 16 µg/ml (C. neoformans nontyped, VNIII, and VGIV), and 32 µg/ml (VGII); itraconazole, 0.25 µg/ml (VNI), 0.5 µg/ml (C. neoformans and C. gattii nontyped and VGI to VGIII), and 1 µg/ml (VGIV); posaconazole, 0.25 µg/ml (C. neoformans nontyped and VNI) and 0.5 µg/ml (C. gattii nontyped and VGI); and voriconazole, 0.12 µg/ml (VNIV), 0.25 µg/ml (C. neoformans and C. gattii nontyped, VNI, VNIII, VGII, and VGIIa,), and 0.5 µg/ml (VGI). The number of laboratories contributing data for other molecular types was too low to ascertain that the differences were due to factors other than assay variation. In the absence of clinical breakpoints, our ECVs may aid in the detection of isolates with acquired resistance mechanisms and should be listed in the revised CLSI M27-A3 and CLSI M27-S3 documents.


Assuntos
Antifúngicos/uso terapêutico , Criptococose/tratamento farmacológico , Criptococose/epidemiologia , Cryptococcus gattii/efeitos dos fármacos , Fluconazol/uso terapêutico , Itraconazol/uso terapêutico , Pirimidinas/uso terapêutico , Triazóis/uso terapêutico , Antifúngicos/farmacologia , Austrália/epidemiologia , Criptococose/microbiologia , Cryptococcus gattii/crescimento & desenvolvimento , Cryptococcus gattii/isolamento & purificação , Farmacorresistência Fúngica/efeitos dos fármacos , Europa (Continente)/epidemiologia , Fluconazol/farmacologia , Humanos , Índia/epidemiologia , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana , América do Norte/epidemiologia , Pirimidinas/farmacologia , África do Sul/epidemiologia , América do Sul/epidemiologia , Triazóis/farmacologia , Voriconazol
18.
J Clin Microbiol ; 50(9): 2846-56, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22740712

RESUMO

Antifungal susceptibility testing of Candida has been standardized and refined and now may play a useful role in managing Candida infections. Important new developments include validation of 24-h reading times for all antifungal agents and the establishment of species-specific epidemiological cutoff values (ECVs) for the systemically active antifungal agents and both common and uncommon species of Candida. The clinical breakpoints (CBPs) for fluconazole, voriconazole, and the echinocandins have been revised to provide species-specific interpretive criteria for the six most common species. The revised CBPs not only are predictive of clinical outcome but also provide a more sensitive means of identifying those strains with acquired or mutational resistance mechanisms. This brief review serves as an update on the new developments in the antifungal susceptibility testing of Candida spp. using Clinical and Laboratory Standards Institute (CLSI) broth microdilution (BMD) methods.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candidíase/microbiologia , Testes de Sensibilidade Microbiana/tendências , Candida/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana/métodos , Testes de Sensibilidade Microbiana/normas
19.
J Clin Microbiol ; 50(4): 1199-203, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22278842

RESUMO

The echinocandin class of antifungal agents is considered to be the first-line treatment of bloodstream infections (BSI) due to Candida glabrata. Recent reports of BSI due to strains of C. glabrata resistant to both fluconazole and the echinocandins are of concern and prompted us to review the experience of two large surveillance programs, the SENTRY Antimicrobial Surveillance Program for the years 2006 through 2010 and the Centers for Disease Control and Prevention population-based surveillance conducted in 2008 to 2010. The in vitro susceptibilities of 1,669 BSI isolates of C. glabrata to fluconazole, voriconazole, anidulafungin, caspofungin, and micafungin were determined by CLSI broth microdilution methods. Fluconazole MICs of ≥64 µg/ml were considered resistant. Strains for which anidulafungin and caspofungin MICs were ≥0.5 µg/ml and for which micafungin MICs were ≥0.25 µg/ml were considered resistant. A total of 162 isolates (9.7%) were resistant to fluconazole, of which 98.8% were nonsusceptible to voriconazole (MIC > 0.5 µg/ml) and 9.3%, 9.3%, and 8.0% were resistant to anidulafungin, caspofungin, and micafungin, respectively. There were 18 fluconazole-resistant isolates that were resistant to one or more of the echinocandins (11.1% of all fluconazole-resistant isolates), all of which contained an acquired mutation in fks1 or fks2. By comparison, there were no echinocandin-resistant strains detected among 110 fluconazole-resistant isolates of C. glabrata tested in 2001 to 2004. These data document the broad emergence of coresistance over time to both azoles and echinocandins in clinical isolates of C. glabrata.


Assuntos
Antifúngicos/farmacologia , Candida glabrata/efeitos dos fármacos , Candidemia/microbiologia , Farmacorresistência Fúngica Múltipla/genética , Equinocandinas/farmacologia , Fluconazol/farmacologia , Adulto , Idoso , Candida glabrata/genética , Candida glabrata/isolamento & purificação , Feminino , Proteínas Fúngicas/genética , Glucosiltransferases/genética , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Vigilância de Evento Sentinela , Adulto Jovem
20.
J Clin Microbiol ; 50(6): 2040-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22461672

RESUMO

Clinical breakpoints (CBPs) and epidemiological cutoff values (ECVs) have been established for several Candida spp. and the newer triazoles and echinocandins but are not yet available for older antifungal agents, such as amphotericin B, flucytosine, or itraconazole. We determined species-specific ECVs for amphotericin B (AMB), flucytosine (FC) and itraconazole (ITR) for eight Candida spp. (30,221 strains) using isolates from 16 different laboratories in Brazil, Canada, Europe, and the United States, all tested by the CLSI reference microdilution method. The calculated 24- and 48-h ECVs expressed in µg/ml (and the percentages of isolates that had MICs less than or equal to the ECV) for AMB, FC, and ITR, respectively, were 2 (99.8)/2 (99.2), 0.5 (94.2)/1 (91.4), and 0.12 (95.0)/0.12 (92.9) for C. albicans; 2 (99.6)/2 (98.7), 0.5 (98.0)/0.5 (97.5), and 2 (95.2)/4 (93.5) for C. glabrata; 2 (99.7)/2 (97.3), 0.5 (98.7)/0.5 (97.8), and 05. (99.7)/0.5 (98.5) for C. parapsilosis; 2 (99.8)/2 (99.2), 0.5 (93.0)/1 (90.5), and 0.5 (97.8)/0.5 (93.9) for C. tropicalis; 2 (99.3)/4 (100.0), 32 (99.4)/32 (99.3), and 1 (99.0)/2 (100.0) for C. krusei; 2 (100.0)/4 (100.0), 0.5 (95.3)/1 (92.9), and 0.5 (95.8)/0.5 (98.1) for C. lusitaniae; -/2 (100.0), 0.5 (98.8)/0.5 (97.7), and 0.25 (97.6)/0.25 (96.9) for C. dubliniensis; and 2 (100.0)/2 (100.0), 1 (92.7)/-, and 1 (100.0)/2 (100.0) for C. guilliermondii. In the absence of species-specific CBP values, these wild-type (WT) MIC distributions and ECVs will be useful for monitoring the emergence of reduced susceptibility to these well-established antifungal agents.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candidíase/microbiologia , Flucitosina/farmacologia , Itraconazol/farmacologia , Brasil , Canadá , Candida/isolamento & purificação , Europa (Continente) , Humanos , Testes de Sensibilidade Microbiana/normas , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA