RESUMO
Granulomas are immune cell aggregates formed in response to persistent inflammatory stimuli. Granuloma macrophage subsets are diverse and carry varying copy numbers of their genomic information. The molecular programs that control the differentiation of such macrophage populations in response to a chronic stimulus, though critical for disease outcome, have not been defined. Here, we delineate a macrophage differentiation pathway by which a persistent Toll-like receptor (TLR) 2 signal instructs polyploid macrophage fate by inducing replication stress and activating the DNA damage response. Polyploid granuloma-resident macrophages formed via modified cell divisions and mitotic defects and not, as previously thought, by cell-to-cell fusion. TLR2 signaling promoted macrophage polyploidy and suppressed genomic instability by regulating Myc and ATR. We propose that, in the presence of persistent inflammatory stimuli, pathways previously linked to oncogene-initiated carcinogenesis instruct a long-lived granuloma-resident macrophage differentiation program that regulates granulomatous tissue remodeling.
Assuntos
Dano ao DNA , Granuloma/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Diferenciação Celular , Proliferação de Células , Humanos , Inflamação/imunologia , Lipoproteínas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mitose , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor 2 Toll-LikeRESUMO
Innate lymphoid cells (ILCs) are a recently recognized group of lymphocytes that have important functions in protecting epithelial barriers against infections and in maintaining organ homeostasis. ILCs have been categorized into three distinct groups, transcriptional circuitry and effector functions of which strikingly resemble the various T helper cell subsets. Here, we identify a common, Id2-expressing progenitor to all interleukin 7 receptor-expressing, "helper-like" ILC lineages, the CHILP. Interestingly, the CHILP differentiated into ILC2 and ILC3 lineages, but not into conventional natural killer (cNK) cells that have been considered an ILC1 subset. Instead, the CHILP gave rise to a peculiar NKp46(+) IL-7Rα(+) ILC lineage that required T-bet for specification and was distinct of cNK cells or other ILC lineages. Such ILC1s coproduced high levels of IFN-γ and TNF and protected against infections with the intracellular parasite Toxoplasma gondii. Our data significantly advance our understanding of ILC differentiation and presents evidence for a new ILC lineage that protects barrier surfaces against intracellular infections.
Assuntos
Diferenciação Celular , Linfócitos/citologia , Linfócitos/imunologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Fator de Transcrição GATA3/metabolismo , Imunidade Inata , Proteína 2 Inibidora de Diferenciação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina-7/metabolismo , Células-Tronco/citologia , Toxoplasma , Toxoplasmose/imunologiaRESUMO
Peripheral T-cell lymphomas (PTCLs), especially angioimmunoblastic and follicular TCLs, have a dismal prognosis because of the lack of efficient therapies, and patients' symptoms are often dominated by an inflammatory phenotype, including fever, night sweats, weight loss, and skin rash. In this study, we investigated the role of inflammatory granulocytes and activated cytokine signaling on T-cell follicular helper-type PTCL (TFH-PTCL) disease progression and symptoms. We showed that ITK-SYK-driven murine PTCLs and primary human TFH-PTCL xenografts both induced inflammation in mice, including murine neutrophil expansion and massive cytokine release. Granulocyte/lymphoma interactions were mediated by positive autoregulatory cytokine loops involving interferon gamma (CD4+ malignant T cells) and interleukin 6 (IL-6; activated granulocytes), ultimately inducing broad JAK activation (JAK1/2/3 and TYK2) in both cell types. Inflammatory granulocyte depletion via antibodies (Ly6G), genetic granulocyte depletion (LyzM-Cre/MCL1flox/flox), or IL-6 deletion within microenvironmental cells blocked inflammatory symptoms, reduced lymphoma infiltration, and enhanced mouse survival. Furthermore, unselective JAK inhibitors (ruxolitinib) inhibited both TCL progression and granulocyte activation in various PTCL mouse models. Our results support the important role of granulocyte-driven inflammation, cytokine-induced granulocyte/CD4+ TCL interactions, and an intact JAK/STAT signaling pathway for TFH-PTCL development and also support broad JAK inhibition as an effective treatment strategy in early disease stages.
Assuntos
Linfoma de Células T Periférico , Linfoma de Células T , Humanos , Animais , Camundongos , Linfoma de Células T Periférico/patologia , Interleucina-6 , Linfoma de Células T/patologia , Granulócitos/patologia , InflamaçãoRESUMO
BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP) is an acquired genetic risk factor for both leukemia and cardiovascular disease. It results in proinflammatory myeloid cells in the bone marrow and blood; however, how these cells behave in the cardiovascular tissue remains unclear. Our study aimed at investigating whether CHIP-mutated macrophages accumulate preferentially in cardiovascular tissues and examining the transcriptome of tissue macrophages from DNMT3A (DNA methyltransferase 3 alpha) or TET2 (Tet methylcytosine dioxygenase 2) mutation carriers. METHODS: We recruited patients undergoing carotid endarterectomy or heart surgeries to screen for CHIP mutation carriers using targeted genomic sequencing. Myeloid and lymphoid cells were isolated from blood and cardiovascular tissue collected during surgeries using flow cytometry. DNA and RNA extracted from these sorted cells were subjected to variant allele frequency measurement using droplet digital polymerase chain reaction and transcriptomic profiling using bulk RNA sequencing, respectively. RESULTS: Using droplet digital polymerase chain reaction, we detected similar variant allele frequency of CHIP in monocytes from blood and macrophages from atheromas and heart tissues, even among heart macrophages with and without CCR2 (C-C motif chemokine receptor 2) expression. Bulk RNA sequencing revealed a proinflammatory gene profile of myeloid cells from DNMT3A or TET2 mutation carriers compared with those from noncarriers. CONCLUSIONS: Quantitatively, CHIP-mutated myeloid cells did not preferentially accumulate in cardiovascular tissues, but qualitatively, they expressed a more disease-prone phenotype.
Assuntos
Doenças Cardiovasculares , Hematopoiese Clonal , Humanos , Hematopoiese Clonal/genética , Hematopoese/genética , Macrófagos/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , MutaçãoRESUMO
Microglia, the resident immune cells of the CNS, sense the activity of neurons and regulate physiological brain functions. They have been implicated in the pathology of brain diseases associated with alterations in neural excitability and plasticity. However, experimental and therapeutic approaches that modulate microglia function in a brain region-specific manner have not been established. In this study, we tested for the effects of repetitive transcranial magnetic stimulation (rTMS), a clinically used noninvasive brain stimulation technique, on microglia-mediated synaptic plasticity; 10 Hz electromagnetic stimulation triggered a release of plasticity-promoting cytokines from microglia in mouse organotypic brain tissue cultures of both sexes, while no significant changes in microglial morphology or microglia dynamics were observed. Indeed, substitution of tumor necrosis factor α (TNFα) and interleukin 6 (IL6) preserved synaptic plasticity induced by 10 Hz stimulation in the absence of microglia. Consistent with these findings, in vivo depletion of microglia abolished rTMS-induced changes in neurotransmission in the mPFC of anesthetized mice of both sexes. We conclude that rTMS affects neural excitability and plasticity by modulating the release of cytokines from microglia.SIGNIFICANCE STATEMENT Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that induces cortical plasticity. Despite its wide use in neuroscience and clinical practice (e.g., depression treatment), the cellular and molecular mechanisms of rTMS-mediated plasticity remain not well understood. Herein, we report an important role of microglia and plasticity-promoting cytokines in synaptic plasticity induced by 10 Hz rTMS in organotypic slice cultures and anesthetized mice, thereby identifying microglia-mediated synaptic adaptation as a target of rTMS-based interventions.
Assuntos
Citocinas , Microglia , Masculino , Feminino , Camundongos , Animais , Plasticidade Neuronal/fisiologia , Encéfalo , Estimulação Magnética Transcraniana/métodos , Fenômenos MagnéticosRESUMO
Patients with acute myeloid leukemia (AML) often achieve remission after allogeneic hematopoietic cell transplantation (allo-HCT) but subsequently die of relapse driven by leukemia cells resistant to elimination by allogeneic T cells based on decreased major histocompatibility complex II (MHC-II) expression and apoptosis resistance. Here we demonstrate that mouse-double-minute-2 (MDM2) inhibition can counteract immune evasion of AML. MDM2 inhibition induced MHC class I and II expression in murine and human AML cells. Using xenografts of human AML and syngeneic mouse models of leukemia, we show that MDM2 inhibition enhanced cytotoxicity against leukemia cells and improved survival. MDM2 inhibition also led to increases in tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and -2 (TRAIL-R1/2) on leukemia cells and higher frequencies of CD8+CD27lowPD-1lowTIM-3low T cells, with features of cytotoxicity (perforin+CD107a+TRAIL+) and longevity (bcl-2+IL-7R+). CD8+ T cells isolated from leukemia-bearing MDM2 inhibitor-treated allo-HCT recipients exhibited higher glycolytic activity and enrichment for nucleotides and their precursors compared with vehicle control subjects. T cells isolated from MDM2 inhibitor-treated AML-bearing mice eradicated leukemia in secondary AML-bearing recipients. Mechanistically, the MDM2 inhibitor-mediated effects were p53-dependent because p53 knockdown abolished TRAIL-R1/2 and MHC-II upregulation, whereas p53 binding to TRAILR1/2 promotors increased upon MDM2 inhibition. The observations in the mouse models were complemented by data from human individuals. Patient-derived AML cells exhibited increased TRAIL-R1/2 and MHC-II expression on MDM2 inhibition. In summary, we identified a targetable vulnerability of AML cells to allogeneic T-cell-mediated cytotoxicity through the restoration of p53-dependent TRAIL-R1/2 and MHC-II production via MDM2 inhibition.
Assuntos
Leucemia Mieloide Aguda , Proteína Supressora de Tumor p53 , Animais , Apoptose , Humanos , Leucemia Mieloide Aguda/genética , Complexo Principal de Histocompatibilidade , Camundongos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transplante Homólogo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para CimaRESUMO
Clonal expansion of CD5-expressing B cells, commonly designated as monoclonal B lymphocytosis (MBL), is a precursor condition for chronic lymphocytic leukemia (CLL). The mechanisms driving subclinical MBL B-cell expansion and progression to CLL, occurring in approximately 1% of affected individuals, are unknown. An autonomously signaling B-cell receptor (BCR) is essential for the pathogenesis of CLL. The objectives of this study were functional characterization of the BCR of MBL in siblings of CLL patients and a comparison of genetic variants in MBL-CLL sibling pairs. Screening of peripheral blood by flow cytometry detected 0.2-480 clonal CLL-phenotype cells per microliter (median: 37/µL) in 34 of 191 (17.8%) siblings of CLL patients. Clonal BCR isolated from highly purified CLL-phenotype cells induced robust calcium mobilization in BCR-deficient murine pre-B cells in the absence of external antigen and without experimental crosslinking. This autonomous BCR signal was less intense than the signal originating from the CLL BCR of their CLL siblings. According to genotyping by single nucleotide polymorphism array, whole exome, and targeted panel sequencing, CLL risk alleles were found with high and similar prevalence in CLL patients and MBL siblings, respectively. Likewise, the prevalence of recurrent CLL-associated genetic variants was similar between CLL and matched MBL samples. However, copy number variations and small variants were frequently subclonal in MBL cells, suggesting their acquisition during subclinical clonal expansion. These findings support a stepwise model of CLL pathogenesis, in which autonomous BCR signaling leads to a non-malignant (oligo)clonal expansion of CD5+ B cells, followed by malignant progression to CLL after acquisition of pathogenic genetic variants.
Assuntos
Leucemia Linfocítica Crônica de Células B , Leucemia , Linfocitose , Humanos , Animais , Camundongos , Leucemia Linfocítica Crônica de Células B/genética , Irmãos , Variações do Número de Cópias de DNA , Linfocitose/genética , Receptores de Antígenos de Linfócitos B/genética , FenótipoRESUMO
In a randomized phase II trial (AMLSG 14-09, NCT00867672) of elderly, newly diagnosed AML patients, ATRA combined with decitabine (DEC) significantly improved the overall response rate (ORR) and survival also in patients with adverse-risk genetics, without adding toxicity. We performed a post hoc analysis to determine the predictive impact of TP53 status. Despite a nominally higher ORR, the clinically meaningful survival benefit when adding ATRA to DEC was diminished, but not completely negated, in TP53-mutated patients. Indeed, 2 out of 14 TP53-mutated patients (14%) randomized to a DEC + ATRA-containing regimen lived for > 36 months. Further studies of ATRA combined with hypomethylating agents appear warranted in non-M3 AML patients ineligible for HMA/venetoclax therapy. Trial Registration: ClinicalTrials.gov identifier: NCT00867672.
RESUMO
The pro-inflammatory cytokine tumor necrosis factor α (TNFα) tunes the capacity of neurons to express synaptic plasticity. It remains, however, unclear how TNFα mediates synaptic positive (=change) and negative (=stability) feedback mechanisms. We assessed effects of TNFα on microglia activation and synaptic transmission onto CA1 pyramidal neurons of mouse organotypic entorhino-hippocampal tissue cultures. TNFα mediated changes in excitatory and inhibitory neurotransmission in a concentration-dependent manner, where low concentration strengthened glutamatergic neurotransmission via synaptic accumulation of GluA1-only-containing AMPA receptors and higher concentration increased inhibition. The latter induced the synaptic accumulation of GluA1-only-containing AMPA receptors as well. However, activated, pro-inflammatory microglia mediated a homeostatic adjustment of excitatory synapses, that is, an initial increase in excitatory synaptic strength at 3 h returned to baseline within 24 h, while inhibitory neurotransmission increased. In microglia-depleted tissue cultures, synaptic strengthening triggered by high levels of TNFα persisted and the impact of TNFα on inhibitory neurotransmission was still observed and dependent on its concentration. These findings underscore the essential role of microglia in TNFα-mediated synaptic plasticity. They suggest that pro-inflammatory microglia mediate synaptic homeostasis, that is, negative feedback mechanisms, which may affect the ability of neurons to express further plasticity, thereby emphasizing the importance of microglia as gatekeepers of synaptic change and stability.
Assuntos
Microglia , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/farmacologia , Receptores de AMPA , Plasticidade Neuronal/fisiologia , Hipocampo , Transmissão Sináptica/fisiologia , Sinapses/fisiologiaRESUMO
Acute myeloid leukaemia (AML) relapse after allogeneic haematopoietic cell transplantation (allo-HCT) is often driven by immune-related mechanisms and associated with poor prognosis. Immune checkpoint inhibitors combined with hypomethylating agents (HMA) may restore or enhance the graft-versus-leukaemia effect. Still, data about using this combination regimen after allo-HCT are limited. We conducted a prospective, phase II, open-label, single-arm study in which we treated patients with haematological AML relapse after allo-HCT with HMA plus the anti-PD-1 antibody nivolumab. The response was correlated with DNA-, RNA- and protein-based single-cell technology assessments to identify biomarkers associated with therapeutic efficacy. Sixteen patients received a median number of 2 (range 1-7) nivolumab applications. The overall response rate (CR/PR) at day 42 was 25%, and another 25% of the patients achieved stable disease. The median overall survival was 15.6 months. High-parametric cytometry documented a higher frequency of activated (ICOS+ , HLA-DR+ ), low senescence (KLRG1- , CD57- ) CD8+ effector T cells in responders. We confirmed these findings in a preclinical model. Single-cell transcriptomics revealed a pro-inflammatory rewiring of the expression profile of T and myeloid cells in responders. In summary, the study indicates that the post-allo-HCT HMA/nivolumab combination induces anti-AML immune responses in selected patients and could be considered as a bridging approach to a second allo-HCT. Trial-registration: EudraCT-No. 2017-002194-18.
RESUMO
Polycystic kidney disease (PKD) and other renal ciliopathies are characterized by cysts, inflammation, and fibrosis. Cilia function as signaling centers, but a molecular link to inflammation in the kidney has not been established. Here, we show that cilia in renal epithelia activate chemokine signaling to recruit inflammatory cells. We identify a complex of the ciliary kinase LKB1 and several ciliopathy-related proteins including NPHP1 and PKD1. At homeostasis, this ciliary module suppresses expression of the chemokine CCL2 in tubular epithelial cells. Deletion of LKB1 or PKD1 in mouse renal tubules elevates CCL2 expression in a cell-autonomous manner and results in peritubular accumulation of CCR2+ mononuclear phagocytes, promoting a ciliopathy phenotype. Our findings establish an epithelial organelle, the cilium, as a gatekeeper of tissue immune cell numbers. This represents an unexpected disease mechanism for renal ciliopathies and establishes a new model for how epithelial cells regulate immune cells to affect tissue homeostasis.
Assuntos
Quimiocina CCL2/metabolismo , Cílios/patologia , Doenças Renais Císticas/congênito , Rim Policístico Autossômico Dominante/patologia , Proteína Quinase C/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Quinases Ativadas por AMP , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Proteínas do Citoesqueleto , Cães , Células Epiteliais/metabolismo , Feminino , Células HEK293 , Humanos , Doenças Renais Císticas/patologia , Túbulos Renais/citologia , Túbulos Renais/patologia , Macrófagos/metabolismo , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/fisiologia , Rim Policístico Autossômico Dominante/genética , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Peixe-ZebraRESUMO
Wilms' tumor 1 (WT1) protein is highly immunogenic and overexpressed in acute myeloid leukemia (AML), consequently ranked as a promising target for novel immunotherapeutic strategies. Here we report our experience of a phase I/II clinical trial (NCT01051063) of a vaccination strategy based on WT1 recombinant protein (WT1-A10) together with vaccine adjuvant AS01B in five elderly AML patients (median age 69 years, range 63-75) receiving a total of 62 vaccinations (median 18, range 3-20) after standard chemotherapy. Clinical benefit was observed in three patients: one patient achieved measurable residual disease clearance during WT1 vaccination therapy, another patient maintained long-term molecular remission over 59 months after the first vaccination cycle. Interestingly, in one case, we observed a complete clonal switch at AML relapse with loss of WT1 expression, proposing suppression of the original AML clone by WT1-based vaccination therapy. Detected humoral and cellular CD4+ T cell immune responses point to efficient immune stimulation post-vaccination, complementing hints for induced conventional T cell infiltration into the bone marrow and a shift from senescent/exhausted to a more activated T cell profile. Overall, the vaccinations with WT1 recombinant protein had an acceptable safety profile and were thus well tolerated.To conclude, our data provide evidence of potential clinical efficacy of WT1 protein-based vaccination therapy in AML patients, warranting further investigations.
Assuntos
Vacinas Anticâncer , Leucemia Mieloide Aguda , Idoso , Humanos , Pessoa de Meia-Idade , Leucemia Mieloide Aguda/terapia , Proteínas Recombinantes/uso terapêutico , Vacinação , Proteínas WT1/uso terapêuticoRESUMO
Acute graft-versus-host disease (GVHD) is a life-threatening complication after allogeneic hematopoietic cell transplantation (allo-HCT). Although currently used GVHD treatment regimens target the donor immune system, we explored here an approach that aims at protecting and regenerating Paneth cells (PCs) and intestinal stem cells (ISCs). Glucagon-like-peptide-2 (GLP-2) is an enteroendocrine tissue hormone produced by intestinal L cells. We observed that acute GVHD reduced intestinal GLP-2 levels in mice and patients developing GVHD. Treatment with the GLP-2 agonist, teduglutide, reduced de novo acute GVHD and steroid-refractory GVHD, without compromising graft-versus-leukemia (GVL) effects in multiple mouse models. Mechanistically GLP-2 substitution promoted regeneration of PCs and ISCs, which enhanced production of antimicrobial peptides and caused microbiome changes. GLP-2 expanded intestinal organoids and reduced expression of apoptosis-related genes. Low numbers of L cells in intestinal biopsies and high serum levels of GLP-2 were associated with a higher incidence of nonrelapse mortality in patients undergoing allo-HCT. Our findings indicate that L cells are a target of GVHD and that GLP-2-based treatment of acute GVHD restores intestinal homeostasis via an increase of ISCs and PCs without impairing GVL effects. Teduglutide could become a novel combination partner for immunosuppressive GVHD therapy to be tested in clinical trials.
Assuntos
Peptídeo 2 Semelhante ao Glucagon/uso terapêutico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Intestinos/efeitos dos fármacos , Celulas de Paneth/efeitos dos fármacos , Peptídeos/uso terapêutico , Células-Tronco/efeitos dos fármacos , Animais , Feminino , Fármacos Gastrointestinais/uso terapêutico , Doença Enxerto-Hospedeiro/patologia , Humanos , Intestinos/citologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Celulas de Paneth/patologia , Células-Tronco/patologia , Transplante Homólogo/efeitos adversosRESUMO
Acute graft-versus-host disease (GvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT), a potentially curative treatment for leukemia. Endoplasmic reticulum (ER) stress occurs when the protein folding capacity of the ER is oversaturated. How ER stress modulates tissue homeostasis in the context of alloimmunity is not well understood. We show that ER stress contributes to intestinal tissue injury during GvHD and can be targeted pharmacologically. We observed high levels of ER stress upon GvHD onset in a murine allo- HCT model and in human biopsies. These levels correlated with GvHD severity, underscoring a novel therapeutic potential. Elevated ER stress resulted in increased cell death of intestinal organoids. In a conditional knockout model, deletion of the ER stress regulator transcription factor Xbp1 in intestinal epithelial cells induced a general ER stress signaling disruption and aggravated GvHD lethality. This phenotype was mediated by changes in the production of antimicrobial peptides and the microbiome composition as well as activation of pro-apoptotic signaling. Inhibition of inositol-requiring enzyme 1α (IRE1α), the most conserved signaling branch in ER stress, reduced GvHD development in mice. IRE1α blockade by the small molecule inhibitor 4m8c improved intestinal cell viability, without impairing hematopoietic regeneration and T-cell activity against tumor cells. Our findings in patient samples and mice indicate that excessive ER stress propagates tissue injury during GvHD. Reducing ER stress could improve the outcome of patients suffering from GvHD.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Camundongos , Proteínas Serina-Treonina QuinasesRESUMO
MicroRNAs are key regulators of the cardiac response to injury. MiR-100 has recently been suggested to be involved in different forms of heart failure, but functional studies are lacking. In the present study, we examined the impact of transgenic miR-100 overexpression on cardiac structure and function during physiological aging and pathological pressure-overload-induced heart failure in mice after transverse aortic constriction surgery. MiR-100 was moderately upregulated after induction of pressure overload in mice. While in our transgenic model the cardiomyocyte-specific overexpression of miR-100 did not result in an obvious cardiac phenotype in unchallenged mice, the transgenic mouse strain exhibited less left ventricular dilatation and a higher ejection fraction than wildtype animals, demonstrating an attenuation of maladaptive cardiac remodeling by miR-100. Cardiac transcriptome analysis identified a repression of several regulatory genes related to cardiac metabolism, lipid peroxidation, and production of reactive oxygen species (ROS) by miR-100 overexpression, possibly mediating the observed functional effects. While the modulation of ROS-production seemed to be indirectly affected by miR-100 via Alox5-and Nox4-downregulation, we demonstrated that miR-100 induced a direct repression of the scavenger protein CD36 in murine hearts resulting in a decreased uptake of long-chain fatty acids and an alteration of mitochondrial respiratory function with an enhanced glycolytic state. In summary, we identified miR-100 as a modulator of cardiac metabolism and ROS production without an apparent cardiac phenotype at baseline but a protective effect under conditions of pressure-overload-induced cardiac stress, providing new insight into the mechanisms of heart failure.
Assuntos
Antígenos CD36/metabolismo , Insuficiência Cardíaca/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , NADPH Oxidase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Animais , Antígenos CD36/genética , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Células HEK293 , Insuficiência Cardíaca/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , NADPH Oxidase 4/genética , Ratos , Volume Sistólico/genética , Transfecção , Remodelação Ventricular/genéticaRESUMO
BACKGROUND: Diet-induced obesity can result in the development of a diverse spectrum of cardiovascular and metabolic diseases, including type 2 diabetes, dyslipidemia, non-alcoholic liver steatosis and atherosclerotic disease. MicroRNAs have been described to be important regulators of metabolism and disease development. METHODS: In the current study, we investigated the effects of ubiquitous miR-100 overexpression on weight gain and the metabolic phenotype in a newly generated transgenic mouse strain under normal chow and high fat diet and used microarray expression analysis to identify new potential target genes of miR-100. RESULTS: While transgenic overexpression of miR-100 did not significantly affect weight and metabolism under a normal diet, miR-100 overexpressing mice showed a reduced weight gain under a high fat diet compared to wildtype mice, despite an equal calorie intake. This was accompanied by less visceral and subcutaneous fat development and lover serum LDL cholesterol. In addition, transgenic miR-100 mice were more glucose tolerant and insulin sensitive and demonstrated increased energy expenditure under high fat diet feeding. A comprehensive gene expression profiling revealed the differential expression of several genes involved in lipid storage- and metabolism, among them CD36 and Cyp4A14. Our data showed a direct regulation of CD36 by miR-100, leading to a reduced fatty acid uptake in primary hepatocytes overexpressing miR-100 and the downregulation of several downstream mediators of lipid metabolism such as ACC1, FABP4, FAS and PPARγ in the liver. CONCLUSIONS: Our findings demonstrate a protective role of miR-100 in high fat diet induced metabolic syndrome and liver steatosis, partially mediated by the direct repression of CD36 and attenuation of hepatic lipid storage, implicating miR-100 as a possible therapeutic target in liver steatosis.
Assuntos
Hipertrigliceridemia/etiologia , Hipertrigliceridemia/metabolismo , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Regiões 3' não Traduzidas , Animais , Biomarcadores , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Glucose/metabolismo , Hepatócitos/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Interferência de RNA , Transcriptoma , Aumento de PesoRESUMO
PURPOSE: Common variable immune deficiency (CVID) confers an increased risk of lymphoid neoplasms, but reports describing the precise WHO specification of the lymphoma subtypes and their immunological environment are lacking. We therefore classified lymphomas-occurring in a cohort of 21 adult CVID patients during a 17-year period at our center-according to the 2016 WHO classification and characterized the local and systemic immunological context RESULTS: The median time between the onset of CVID and lymphoma was 14 years. Patients showed a high prevalence of preceding immune dysregulation: lymphadenopathy (n = 13, 62%), splenomegaly (n = 18, 86%), autoimmune cytopenia (n = 14, 67%), and gastrointestinal involvement (n = 15, 71%). The entities comprised extranodal marginal zone lymphoma (n = 6), diffuse large B cell lymphoma (n = 7), plasmablastic lymphoma (n = 1), classic Hodgkin lymphoma (n = 4, including three cases with germline CTLA4 mutations), T cell large granular lymphocytic leukemia (n = 2), and peripheral T cell lymphoma, not otherwise specified (n = 1), but no follicular lymphoma. An Epstein-Barr virus association was documented in eight of 16 investigated lymphomas. High expression of PDL1 by tumor cells in five and of PDL1 and PD1 by tumor-infiltrating macrophages and T cells in 12 of 12 investigated lymphomas suggested a tolerogenic immunological tumor environment. CONCLUSION: In summary, a diverse combination of specific factors like genetic background, chronic immune activation, viral trigger, and impaired immune surveillance contributes to the observed spectrum of lymphomas in CVID. In the future, targeted therapies, e.g., PD1/PDL1 inhibitors in CVID associated lymphomas with a tolerogenic environment may improve therapy outcome.
Assuntos
Imunodeficiência de Variável Comum/imunologia , Linfoma/imunologia , Adolescente , Adulto , Biomarcadores Tumorais/imunologia , Criança , Estudos de Coortes , Infecções por Vírus Epstein-Barr/imunologia , Feminino , Herpesvirus Humano 4/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Linfócitos T/imunologia , Adulto JovemRESUMO
Acute graft-versus-host disease causes significant mortality in patients undergoing allogeneic hematopoietic cell transplantation. Immunosuppressive treatment for graft-versus-host disease can impair the beneficial graft-versus-leukemia effect and facilitate malignancy relapse. Therefore, novel approaches that protect and regenerate injured tissues without impeding the donor immune system are needed. Bile acids regulate multiple cellular processes and are in close contact with the intestinal epithelium, a major target of acute graft-versus-host disease. Here, we found that the bile acid pool is reduced following graft-versus-host disease induction in a preclinical model. We evaluated the efficacy of bile acids to protect the intestinal epithelium without reducing anti-tumor immunity. We observed that application of bile acids decreased cytokine-induced cell death in intestinal organoids and cell lines. Systemic prophylactic administration of tauroursodeoxycholic acid, the most potent compound in our in vitro studies, reduced graft-versus-host disease severity in three different murine transplantation models. This effect was mediated by decreased activity of the antigen presentation machinery and subsequent prevention of apoptosis of the intestinal epithelium. Moreover, bile acid administration did not alter the bacterial composition in the intestine suggesting that its effects are cell-specific and independent of the microbiome. Treatment of human and murine leukemic cell lines with tauroursodeoxycholic acid did not interfere with the expression of antigen presentation-related molecules. Systemic T cell expansion and especially their cytotoxic capacity against leukemic cells remained intact. This study establishes a role for bile acids in the prevention of acute graft-versus-host disease without impairing the graft-versus-leukemia effect. In particular, we provide a scientific rationale for the systematic use of tauroursodeoxycholic acid in patients undergoing allogeneic hematopoietic cell transplantation.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia , Animais , Apresentação de Antígeno , Ácidos e Sais Biliares , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Intestinos , Camundongos , Transplante HomólogoRESUMO
Innate lymphoid cells (ILCs) reside at mucosal surfaces and control immunity to intestinal infections. Type 2 innate lymphoid cells (ILC2s) produce cytokines such as IL-5 and IL-13, are required for immune defense against helminth infections, and are involved in the pathogenesis of airway hyperreactivity. Here, we have investigated the role of the transcription factor GATA-3 for ILC2 differentiation and maintenance. We showed that ILC2s and their lineage-specified bone marrow precursors (ILC2Ps), as identified here, were characterized by continuous high expression of GATA-3. Analysis of mice with temporary deletion of GATA-3 in all ILCs showed that GATA-3 was required for the differentiation and maintenance of ILC2s but not for RORγt(+) ILCs. Thus, our data demonstrate that GATA-3 is essential for ILC2 fate decisions and reveal similarities between the transcriptional programs controlling ILC and T helper cell fates.