Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Islets ; 16(1): 2334044, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38533763

RESUMO

Pancreatic beta cells are among the slowest replicating cells in the human body and have not been observed to increase in number except during the fetal and neonatal period, in cases of obesity, during puberty, as well as during pregnancy. Pregnancy is associated with increased beta cell mass to meet heightened insulin demands. This phenomenon raises the intriguing possibility that factors present in the serum of pregnant individuals may stimulate beta cell proliferation and offer insights into expansion of the beta cell mass for treatment and prevention of diabetes. The primary objective of this study was to test the hypothesis that serum from pregnant donors contains bioactive factors capable of inducing human beta cell proliferation. An immortalized human beta cell line with protracted replication (EndoC-ßH1) was cultured in media supplemented with serum from pregnant and non-pregnant female and male donors and assessed for differences in proliferation. This experiment was followed by assessment of proliferation of primary human beta cells. Sera from five out of six pregnant donors induced a significant increase in the proliferation rate of EndoC-ßH1 cells. Pooled serum from the cohort of pregnant donors also increased the rate of proliferation in primary human beta cells. This study demonstrates that serum from pregnant donors stimulates human beta cell proliferation. These findings suggest the existence of pregnancy-associated factors that can offer novel avenues for beta cell regeneration and diabetes prevention strategies. Further research is warranted to elucidate the specific factors responsible for this effect.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Recém-Nascido , Humanos , Masculino , Feminino , Gravidez , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Linhagem Celular , Diabetes Mellitus/metabolismo , Proliferação de Células
2.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405840

RESUMO

Histopathological heterogeneity in human pancreas has been well documented; however, functional evidence at the tissue level is scarce. Herein we investigated in situ glucose-stimulated islet and carbachol-stimulated acinar cell secretion across the pancreas head (PH), body (PB), and tail (PT) regions in no diabetes (ND, n=15), single islet autoantibody-positive (1AAb+, n=7), and type 1 diabetes donors (T1D, <14 months duration, n=5). Insulin, glucagon, pancreatic amylase, lipase, and trypsinogen secretion along with 3D tissue morphometrical features were comparable across the regions in ND. In T1D, insulin secretion and beta-cell volume were significantly reduced within all regions, while glucagon and enzymes were unaltered. Beta-cell volume was lower despite normal insulin secretion in 1AAb+, resulting in increased volume-adjusted insulin secretion versus ND. Islet and acinar cell secretion in 1AAb+ were consistent across PH, PB and PT. This study supports low inter-regional variation in pancreas slice function and potentially, increased metabolic demand in 1AAb+.

3.
Cell Rep ; 43(6): 114346, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38850534

RESUMO

Histopathological heterogeneity in the human pancreas is well documented; however, functional evidence at the tissue level is scarce. Herein, we investigate in situ glucose-stimulated islet and carbachol-stimulated acinar cell secretion across the pancreas head (PH), body (PB), and tail (PT) regions in donors without diabetes (ND; n = 15), positive for one islet autoantibody (1AAb+; n = 7), and with type 1 diabetes (T1D; <14 months duration, n = 5). Insulin, glucagon, pancreatic amylase, lipase, and trypsinogen secretion along with 3D tissue morphometrical features are comparable across regions in ND. In T1D, insulin secretion and beta-cell volume are significantly reduced within all regions, while glucagon and enzymes are unaltered. Beta-cell volume is lower despite normal insulin secretion in 1AAb+, resulting in increased volume-adjusted insulin secretion versus ND. Islet and acinar cell secretion in 1AAb+ are consistent across the PH, PB, and PT. This study supports low inter-regional variation in pancreas slice function and, potentially, increased metabolic demand in 1AAb+.


Assuntos
Diabetes Mellitus Tipo 1 , Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Insulina/metabolismo , Feminino , Secreção de Insulina/efeitos dos fármacos , Adulto , Pessoa de Meia-Idade , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Acinares/metabolismo , Células Acinares/patologia , Glucagon/metabolismo , Glucose/metabolismo , Autoanticorpos/imunologia , Amilases/metabolismo
4.
Adv Healthc Mater ; : e2303005, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38145369

RESUMO

This review aims to understand the current progress in immune-instructive granular hydrogels and identify the key features used as immunomodulatory strategies. Published work is systematically reviewed and relevant information about granular hydrogels used throughout these studies is collected. The base polymer, microgel generation technique, polymer crosslinking chemistry, particle size and shape, annealing strategy, granular hydrogel stiffness, pore size and void space, degradability, biomolecule presentation, and drug release are cataloged for each work. Several granular hydrogel parameters used for immune modulation: porosity, architecture, bioactivity, drug release, cell delivery, and modularity, are identified. The authors found in this review that porosity is the most significant factor influencing the innate immune response to granular hydrogels, while incorporated bioactivity is more significant in influencing adaptive immune responses. Here, the authors' findings and summarized results from each section are presented and suggestions are made for future studies to better understand the benefits of using immune-instructive granular hydrogels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA