Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Nature ; 583(7817): 620-624, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32669709

RESUMO

Approximately 75% of all breast cancers express the oestrogen and/or progesterone receptors. Endocrine therapy is usually effective in these hormone-receptor-positive tumours, but primary and acquired resistance limits its long-term benefit1,2. Here we show that in mouse models of hormone-receptor-positive breast cancer, periodic fasting or a fasting-mimicking diet3-5 enhances the activity of the endocrine therapeutics tamoxifen and fulvestrant by lowering circulating IGF1, insulin and leptin and by inhibiting AKT-mTOR signalling via upregulation of EGR1 and PTEN. When fulvestrant is combined with palbociclib (a cyclin-dependent kinase 4/6 inhibitor), adding periodic cycles of a fasting-mimicking diet promotes long-lasting tumour regression and reverts acquired resistance to drug treatment. Moreover, both fasting and a fasting-mimicking diet prevent tamoxifen-induced endometrial hyperplasia. In patients with hormone-receptor-positive breast cancer receiving oestrogen therapy, cycles of a fasting-mimicking diet cause metabolic changes analogous to those observed in mice, including reduced levels of insulin, leptin and IGF1, with the last two remaining low for extended periods. In mice, these long-lasting effects are associated with long-term anti-cancer activity. These results support further clinical studies of a fasting-mimicking diet as an adjuvant to oestrogen therapy in hormone-receptor-positive breast cancer.


Assuntos
Neoplasias da Mama/dietoterapia , Neoplasias da Mama/tratamento farmacológico , Dietoterapia/métodos , Jejum/fisiologia , Fulvestranto/uso terapêutico , Animais , Fatores Biológicos/sangue , Neoplasias da Mama/patologia , Dieta Saudável/métodos , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Fulvestranto/administração & dosagem , Humanos , Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/sangue , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos SCID , PTEN Fosfo-Hidrolase/metabolismo , Piperazinas/administração & dosagem , Piperazinas/uso terapêutico , Piridinas/administração & dosagem , Piridinas/uso terapêutico , Receptores de Estrogênio , Receptores de Progesterona , Tamoxifeno/efeitos adversos , Tamoxifeno/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
2.
PLoS Genet ; 19(10): e1010988, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37831730

RESUMO

Alternative splicing (AS) appears to be altered in Huntington's disease (HD), but its significance for early, pre-symptomatic disease stages has not been inspected. Here, taking advantage of Htt CAG knock-in mouse in vitro and in vivo models, we demonstrate a correlation between Htt CAG repeat length and increased aberrant linear AS, specifically affecting neural progenitors and, in vivo, the striatum prior to overt behavioral phenotypes stages. Remarkably, a significant proportion (36%) of the aberrantly spliced isoforms are not-functional and meant to non-sense mediated decay (NMD). The expanded Htt CAG repeats further reflect on a previously neglected, global impairment of back-splicing, leading to decreased circular RNAs production in neural progenitors. Integrative transcriptomic analyses unveil a network of transcriptionally altered micro-RNAs and RNA-binding proteins (Celf, hnRNPs, Ptbp, Srsf, Upf1, Ythd2) which might influence the AS machinery, primarily in neural cells. We suggest that this unbalanced expression of linear and circular RNAs might alter neural fitness, contributing to HD pathogenesis.


Assuntos
Doença de Huntington , Camundongos , Animais , Doença de Huntington/genética , Doença de Huntington/patologia , RNA Circular/genética , Splicing de RNA , Processamento Alternativo/genética , Perfilação da Expressão Gênica , Expansão das Repetições de Trinucleotídeos/genética , Proteína Huntingtina/genética
3.
Nucleic Acids Res ; 50(18): 10449-10468, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36156150

RESUMO

Single-strand selective uracil-DNA glycosylase 1 (SMUG1) initiates base excision repair (BER) of uracil and oxidized pyrimidines. SMUG1 status has been associated with cancer risk and therapeutic response in breast carcinomas and other cancer types. However, SMUG1 is a multifunctional protein involved, not only, in BER but also in RNA quality control, and its function in cancer cells is unclear. Here we identify several novel SMUG1 interaction partners that functions in many biological processes relevant for cancer development and treatment response. Based on this, we hypothesized that the dominating function of SMUG1 in cancer might be ascribed to functions other than BER. We define a bad prognosis signature for SMUG1 by mapping out the SMUG1 interaction network and found that high expression of genes in the bad prognosis network correlated with lower survival probability in ER+ breast cancer. Interestingly, we identified hsa-let-7b-5p microRNA as an upstream regulator of the SMUG1 interactome. Expression of SMUG1 and hsa-let-7b-5p were negatively correlated in breast cancer and we found an inhibitory auto-regulatory loop between SMUG1 and hsa-let-7b-5p in the MCF7 breast cancer cells. We conclude that SMUG1 functions in a gene regulatory network that influence the survival and treatment response in several cancers.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , MicroRNAs/genética , Prognóstico , Uracila/metabolismo , Uracila-DNA Glicosidase/genética
4.
Nucleic Acids Res ; 50(22): 12809-12828, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36537238

RESUMO

Disruptive mutations in the chromodomain helicase DNA-binding protein 8 gene (CHD8) have been recurrently associated with autism spectrum disorders (ASDs). Here we investigated how chromatin reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes and correlates with altered alternative splicing patterns of 462 genes implicated in 'regulation of RNA splicing' and 'mRNA catabolic process'. Mass spectrometry analysis uncovered a novel interaction between CHD8 and the splicing regulator heterogeneous nuclear ribonucleoprotein L (hnRNPL), providing the first mechanistic insights to explain the CHD8 suppression-derived splicing phenotype, partly implicating SETD2, a H3K36me3 methyltransferase. In summary, our results point toward broad molecular consequences of CHD8 suppression, entailing altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD.


Assuntos
Processamento Alternativo , Caderinas , Histonas , Cromatina , Histonas/metabolismo , Lisina/metabolismo , RNA/metabolismo , Caderinas/genética , Humanos , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Transtorno do Espectro Autista/genética
5.
Blood ; 138(12): 1053-1066, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-33900379

RESUMO

B-cell receptor (BCR) signals play a critical role in the pathogenesis of chronic lymphocytic leukemia (CLL), but their role in regulating CLL cell proliferation has still not been firmly established. Unlike normal B cells, CLL cells do not proliferate in vitro upon engagement of the BCR, suggesting that CLL cell proliferation is regulated by other signals from the microenvironment, such as those provided by Toll-like receptors or T cells. Here, we report that BCR engagement of human and murine CLL cells induces several positive regulators of the cell cycle, but simultaneously induces the negative regulators CDKN1A, CDKN2A, and CDKN2B, which block cell-cycle progression. We further show that introduction of genetic lesions that downregulate these cell-cycle inhibitors, such as inactivating lesions in CDKN2A, CDKN2B, and the CDKN1A regulator TP53, leads to more aggressive disease in a murine in vivo CLL model and spontaneous proliferation in vitro that is BCR dependent but independent of costimulatory signals. Importantly, inactivating lesions in CDKN2A, CDKN2B, and TP53 frequently co-occur in Richter syndrome (RS), and BCR stimulation of human RS cells with such lesions is sufficient to induce proliferation. We also show that tumor cells with combined TP53 and CDKN2A/2B abnormalities remain sensitive to BCR-inhibitor treatment and are synergistically sensitive to the combination of a BCR and cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor both in vitro and in vivo. These data provide evidence that BCR signals are directly involved in driving CLL cell proliferation and reveal a novel mechanism of Richter transformation.


Assuntos
Transformação Celular Neoplásica , Inibidor de Quinase Dependente de Ciclina p15 , Inibidor p16 de Quinase Dependente de Ciclina , Leucemia Linfocítica Crônica de Células B , Receptores de Antígenos de Linfócitos B , Transdução de Sinais , Proteína Supressora de Tumor p53 , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/imunologia , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/imunologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/imunologia , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/imunologia , Camundongos , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/imunologia
6.
Cell Mol Life Sci ; 79(8): 446, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35876890

RESUMO

Increasing evidence suggests different, not completely understood roles of microRNA biogenesis in the development and progression of lung cancer. The overexpression of the DNA repair protein apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is an important cause of poor chemotherapeutic response in lung cancer and its involvement in onco-miRNAs biogenesis has been recently described. Whether APE1 regulates miRNAs acting as prognostic biomarkers of lung cancer has not been investigated, yet. In this study, we analyzed miRNAs differential expression upon APE1 depletion in the A549 lung cancer cell line using high-throughput methods. We defined a signature of 13 miRNAs that strongly correlate with APE1 expression in human lung cancer: miR-1246, miR-4488, miR-24, miR-183, miR-660, miR-130b, miR-543, miR-200c, miR-376c, miR-218, miR-146a, miR-92b and miR-33a. Functional enrichment analysis of this signature revealed its biological relevance in cancer cell proliferation and survival. We validated DICER1 as a direct functional target of the APE1-regulated miRNA-33a-5p and miR-130b-3p. Importantly, IHC analyses of different human tumors confirmed a negative correlation existing between APE1 and Dicer1 protein levels. DICER1 downregulation represents a prognostic marker of cancer development but the mechanisms at the basis of this phenomenon are still completely unknown. Our findings, suggesting that APE1 modulates DICER1 expression via miR-33a and miR-130b, reveal new mechanistic insights on DICER1 regulation, which are of relevance in lung cancer chemoresistance and cancer invasiveness.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo
7.
J Cell Mol Med ; 26(13): 3687-3701, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35712781

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is a genetic disease associated with sudden cardiac death and cardiac fibro-fatty replacement. Over the last years, several works have demonstrated that different epigenetic enzymes can affect not only gene expression changes in cardiac diseases but also cellular metabolism. Specifically, the histone acetyltransferase GCN5 is known to facilitate adipogenesis and modulate cardiac metabolism in heart failure. Our group previously demonstrated that human primary cardiac stromal cells (CStCs) contribute to adipogenesis in the ACM pathology. Thus, this study aims to evaluate the role of GCN5 in ACM intracellular lipid accumulation. To do so, CStCs were obtained from right ventricle biopsies of ACM patients and from samples of healthy cadaveric donors (CTR). GCN5 expression was increased both in ex vivo and in vitro ACM samples compared to CTR. When GCN5 expression was silenced or pharmacologically inhibited by the administration of MB-3, we observed a reduction in lipid accumulation and a mitigation of reactive oxygen species (ROS) production in ACM CStCs. In agreement, transcriptome analysis revealed that the presence of MB-3 modified the expression of pathways related to cellular redox balance. Altogether, our findings suggest that GCN5 inhibition reduces fat accumulation in ACM CStCs, partially by modulating intracellular redox balance pathways.


Assuntos
Displasia Arritmogênica Ventricular Direita , Adipogenia/fisiologia , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Displasia Arritmogênica Ventricular Direita/patologia , Morte Súbita Cardíaca/patologia , Humanos , Lipídeos , Células Estromais/metabolismo
8.
Mol Cell ; 56(5): 617-29, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25454946

RESUMO

Inflammation is a significant factor in cancer development, and a molecular understanding of the parameters dictating the impact of inflammation on cancers could significantly improve treatment. The tumor suppressor p53 is frequently mutated in cancer, and p53 missense mutants (mutp53) can acquire oncogenic properties. We report that cancer cells with mutp53 respond to inflammatory cytokines increasing their invasive behavior. Notably, this action is coupled to expression of chemokines that can expose the tumor to host immunity, potentially affecting response to therapy. Mechanistically, mutp53 fuels NF-κB activation while it dampens activation of ASK1/JNK by TNFα, and this action depends on mutp53 binding and inhibiting the tumor suppressor DAB2IP in the cytoplasm. Interfering with such interaction reduced aggressiveness of cancer cells in xenografts. This interaction is an unexplored mechanism by which mutant p53 can influence tumor evolution, with implications for our understanding of the complex role of inflammation in cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Feminino , Células HCT116 , Humanos , Metástase Linfática , Neoplasias Mamárias Experimentais , Camundongos , Camundongos SCID , Mutação de Sentido Incorreto
9.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614035

RESUMO

Breast cancer (BC) is the primary cause of cancer mortality in women and the triple-negative breast cancer (TNBC) is the most aggressive subtype characterized by poor differentiation and high proliferative properties. High mobility group A1 (HMGA1) is an oncogenic factor involved in the onset and progression of the neoplastic transformation in BC. Here, we unraveled that the replication-dependent-histone (RD-HIST) gene expression is enriched in BC tissues and correlates with HMGA1 expression. We explored the role of HMGA1 in modulating the RD-HIST genes expression in TNBC cells and show that MDA-MB-231 cells, depleted of HMGA1, express low levels of core histones. We show that HMGA1 participates in the activation of the HIST1H4H promoter and that it interacts with the nuclear protein of the ataxia-telangiectasia mutated locus (NPAT), the coordinator of the transcription of the RD-HIST genes. Moreover, we demonstrate that HMGA1 silencing increases the percentage of cells in G0/G1 phase both in TNBC and epirubicin resistant TNBC cells. Moreover, HMGA1 silencing causes an increase in epirubicin IC50 both in parental and epirubicin resistant cells thus suggesting that targeting HMGA1 could affect the efficacy of epirubicin treatment.


Assuntos
Proteína HMGA1a , Histonas , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Ciclo Celular , Linhagem Celular Tumoral , Epirubicina , Histonas/metabolismo , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
10.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499183

RESUMO

The Developmental Origins of Health and Disease (DOHaD) concept correlates early life exposure to stressor conditions with the increased incidence of non-communicable chronic diseases, including prostate cancer (PCa), throughout the life span. However, the molecular mechanisms involved in this process remain poorly understood. In this study, the deregulation of two miRNAs (rno-miR-18a-5p and rno-miR-345-3p) was described in the ventral prostate VP of old rats born to dams fed with a low protein diet (LPD) (6% protein in the diet) during gestational and lactational periods. Integrative analysis of the (VP) transcriptomic and proteomic data revealed changes in the expression profile of 14 identified predicted targets of these two DE miRNAs, which enriched terms related to post-translational protein modification, metabolism of proteins, protein processing in endoplasmic reticulum, phosphonate and phosphinate metabolism, the calnexin/calreticulin cycle, metabolic pathways, N-glycan trimming in the ER and the calnexin/calreticulin cycle, hedgehog ligand biogenesis, the ER-phagosome pathway, detoxification of reactive oxygen species, antigenprocessing-cross presentation, RAB geranylgeranylation, collagen formation, glutathione metabolism, the metabolism of xenobiotics by cytochrome P450, and platinum drug resistance. RT-qPCR validated the deregulation of the miR-18a-5p/P4HB (prolyl 4-hydroxylase subunit beta) network in the VP of older offspring as well as in the PNT-2 cells transfected with mimic miR-18a-5p. Functional in vitro studies revealed a potential modulation of estrogen receptor α (ESR1) by miR-18a-5p in PNT-2 cells, which was also confirmed in the VP of older offspring. An imbalance of the testosterone/estrogen ratio was also observed in the offspring rats born to dams fed with an LPD. In conclusion, deregulation of the miR-18a-5p/P4HB network can contribute to the developmental origins of prostate cancer in maternally malnourished offspring, highlighting the need for improving maternal healthcare during critical windows of vulnerability early in life.


Assuntos
MicroRNAs , Neoplasias da Próstata , Animais , Masculino , Ratos , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Proteômica , Transcriptoma
11.
BMC Genomics ; 22(1): 237, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823787

RESUMO

BACKGROUND: Colossoma macropomum (tambaqui) and Piaractus mesopotamicus (pacu) are good fish species for aquaculture. The tambacu, individuals originating from the induced hybridization of the female tambaqui with the male pacu, present rapid growth and robustness, characteristics which have made the tambacu a good choice for Brazilian fish farms. Here, we used small RNA sequencing to examine global miRNA expression in the genotypes pacu (PC), tambaqui (TQ), and hybrid tambacu (TC), (Juveniles, n = 5 per genotype), to better understand the relationship between tambacu and its parental species, and also to clarify the mechanisms involved in tambacu muscle growth and maintenance based on miRNAs expression. RESULTS: Regarding differentially expressed (DE) miRNAs between the three genotypes, we observed 8 upregulated and 7 downregulated miRNAs considering TC vs. PC; 14 miRNAs were upregulated and 10 were downregulated considering TC vs. TQ, and 15 miRNAs upregulated and 9 were downregulated considering PC vs. TQ. The majority of the miRNAs showed specific regulation for each genotype pair, and no miRNA were shared between the 3 genotype pairs, in both up- and down-regulated miRNAs. Considering only the miRNAs with validated target genes, we observed the miRNAs miR-144-3p, miR-138-5p, miR-206-3p, and miR-499-5p. GO enrichment analysis showed that the main target genes for these miRNAs were grouped in pathways related to oxygen homeostasis, blood vessel modulation, and oxidative metabolism. CONCLUSIONS: Our global miRNA analysis provided interesting DE miRNAs in the skeletal muscle of pacu, tambaqui, and the hybrid tambacu. In addition, in the hybrid tambacu, we identified some miRNAs controlling important molecular muscle markers that could be relevant for the farming maximization.


Assuntos
Caraciformes , MicroRNAs , Animais , Brasil , Caraciformes/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , MicroRNAs/genética , Músculo Esquelético
12.
Environ Microbiol ; 23(12): 7671-7687, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34398481

RESUMO

Studies on bacterial plant diseases have thus far been focused on the single bacterial species causing the disease, with very little attention given to the many other microorganisms present in the microbiome. This study intends to use pathobiome analysis of the rice foot rot disease, caused by Dickeya zeae, as a case study to investigate the effects of this bacterial pathogen to the total resident microbiome and to highlight possible interactions between the pathogen and the members of the community involved in the disease process. The microbiome of asymptomatic and the pathobiome of foot-rot symptomatic field-grown rice plants over two growing periods and belonging to two rice cultivars were determined via 16S rRNA gene amplicon sequencing. Results showed that the presence of D. zeae is associated with an alteration of the resident bacterial community in terms of species composition, abundance and richness, leading to the formation of microbial consortia linked to the disease state. Several bacterial species were significantly co-presented with the pathogen in the two growing periods suggesting that they could be involved in the disease process. Besides, culture-dependent isolation and in planta inoculation studies of a bacterial member of the pathobiome, identified as positive correlated with the pathogen in our in silico analysis, indicated that it benefits from the presence of D. zeae. A similar microbiome/pathobiome experiment was also performed in a symptomatically different rice disease evidencing that not all plant diseases have the same consequence/relationship with the plant microbiome. This study moves away from a pathogen-focused stance and goes towards a more ecological perception considering the effect of the entire microbial community which could be involved in the pathogenesis, persistence, transmission and evolution of plant pathogens.


Assuntos
Microbiota , Oryza , Dickeya , Enterobacteriaceae/genética , Microbiota/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética
14.
Cancer Metastasis Rev ; 37(1): 17-32, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29327093

RESUMO

The involvement of microRNAs in malignant transformation and cancer progression was previously grounded. The observations made by multiple published studies led to the conclusion that some of these small sequences could be eventually used as biomarkers for diagnosis/prognosis. This meta-analysis investigated whether microRNA-181 family members could predict the outcome of patients carrying different types of cancer. We searched the PubMed and Embase databases for studies evaluating the expression levels of miR-181a/b/c/d in patients with cancer, selecting the publications that assessed the relation between low and high levels of one of these four microRNAs and patients' outcome. Hazard ratios (HRs) or risk ratios (RRs) were extracted from the studies, and random-effect model was performed to investigate the role of miR-181 in the outcome of these patients. The meta-analysis comprised 26 studies including 2653 cancer patients from 6 countries. The results showed significant association between the expression of miR-181 family members and colorectal cancer. Considering the heterogeneity of the pathologies, the analysis, including all types of cancer and the expression of all the miR-181 family members together, showed no association with distinct outcome (HR = 1.099, p = 0.435). When the analysis was performed on each microRNA separately, the expression of miR-181c was significantly associated with the outcome of patients with cancer (HR = 2.356, p = 0.011) and miR-181a expression levels significantly correlated with survival in patients with non-small-cell lung cancer (HR = 0.177, p < 0.05). This meta-analysis revealed evidence regarding the involvement of miR-181 family members in the outcome of patients with some types of cancer, according to their expression level.


Assuntos
Biomarcadores Tumorais , MicroRNAs/genética , Neoplasias/genética , Neoplasias/patologia , Animais , Humanos , Neoplasias/terapia , Modelos de Riscos Proporcionais , Viés de Publicação
15.
EMBO Rep ; 17(2): 188-201, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26691213

RESUMO

Mutant p53 proteins are present in more than half of human cancers. Yes-associated protein (YAP) is a key transcriptional regulator controlling organ growth, tissue homeostasis, and cancer. Here, we report that these two determinants of human malignancy share common transcriptional signatures. YAP physically interacts with mutant p53 proteins in breast cancer cells and potentiates their pro-proliferative transcriptional activity. We found YAP as well as mutant p53 and the transcription factor NF-Y onto the regulatory regions of cyclin A, cyclin B, and CDK1 genes. Either mutant p53 or YAP depletion down-regulates cyclin A, cyclin B, and CDK1 gene expression and markedly slows the growth of diverse breast cancer cell lines. Pharmacologically induced cytoplasmic re-localization of YAP reduces the expression levels of cyclin A, cyclin B, and CDK1 genes both in vitro and in vivo. Interestingly, primary breast cancers carrying p53 mutations and displaying high YAP activity exhibit higher expression levels of cyclin A, cyclin B, and CDK1 genes when compared to wt-p53 tumors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Fosfoproteínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/genética , Proteína Quinase CDC2 , Proliferação de Células , Ciclina A/genética , Ciclina A/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Feminino , Células HCT116 , Humanos , Células MCF-7 , Mutação , Fosfoproteínas/genética , Ligação Proteica , Transporte Proteico , Fatores de Transcrição , Proteína Supressora de Tumor p53/genética , Proteínas de Sinalização YAP
16.
Mol Cell Proteomics ; 15(1): 109-23, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26527623

RESUMO

Cancer is a very heterogeneous disease, and biological variability adds a further level of complexity, thus limiting the ability to identify new genes involved in cancer development. Oncogenes whose expression levels control cell aggressiveness are very useful for developing cellular models that permit differential expression screenings in isogenic contexts. HMGA1 protein has this unique property because it is a master regulator in breast cancer cells that control the transition from a nontumorigenic epithelial-like phenotype toward a highly aggressive mesenchymal-like one. The proteins extracted from HMGA1-silenced and control MDA-MB-231 cells were analyzed using label-free shotgun mass spectrometry. The differentially expressed proteins were cross-referenced with DNA microarray data obtained using the same cellular model and the overlapping genes were filtered for factors linked to poor prognosis in breast cancer gene expression meta-data sets, resulting in an HMGA1 protein signature composed of 21 members (HRS, HMGA1 reduced signature). This signature had a prognostic value (overall survival, relapse-free survival, and distant metastasis-free survival) in breast cancer. qRT-PCR, Western blot, and immunohistochemistry analyses validated the link of three members of this signature (KIFC1, LRRC59, and TRIP13) with HMGA1 expression levels both in vitro and in vivo and wound healing assays demonstrated that these three proteins are involved in modulating tumor cell motility. Combining proteomic and genomic data with the aid of bioinformatic tools, our results highlight the potential involvement in neoplastic transformation of a restricted list of factors with an as-yet-unexplored role in cancer. These factors are druggable targets that could be exploited for the development of new, targeted therapeutic approaches in triple-negative breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteína HMGA1a/metabolismo , Proteoma/metabolismo , Proteômica/métodos , ATPases Associadas a Diversas Atividades Celulares , Western Blotting , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica , Proteína HMGA1a/genética , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Cinesinas/genética , Cinesinas/metabolismo , Espectrometria de Massas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Análise Multivariada , Prognóstico , Proteoma/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pesquisa Translacional Biomédica/métodos
17.
Stem Cells ; 32(11): 2998-3011, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25069783

RESUMO

Mesenchymal stem/stromal cells (MSCs) are the precursors of various cell types that compose both normal and cancer tissue microenvironments. In order to support the widely diversified parenchymal cells and tissue organization, MSCs are characterized by a large degree of heterogeneity, although available analyses of molecular and transcriptional data do not provide clear evidence. We have isolated MSCs from high-grade serous ovarian cancers (HG-SOCs) and various normal tissues (N-MSCs), demonstrated their normal genotype and analyzed their transcriptional activity with respect to the large comprehensive FANTOM5 sample dataset. Our integrative analysis conducted against the extensive panel of primary cells and tissues of the FANTOM5 project allowed us to mark the HG-SOC-MSCs CAGE-seq transcriptional heterogeneity and to identify a cell-type-specific transcriptional activity showing a significant relationship with primary mesothelial cells. Our analysis shows that MSCs isolated from different tissues are highly heterogeneous. The mesothelial-related gene signature identified in this study supports the hypothesis that HG-SOC-MSCs are bona fide representatives of the ovarian district. This finding indicates that HG-SOC-MSCs could actually derive from the coelomic mesothelium, suggesting that they might be linked to the epithelial tumor through common embryological precursors.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Mesoteliais/metabolismo , Neoplasias Ovarianas/patologia , Microambiente Tumoral/fisiologia , Carcinoma Epitelial do Ovário , Feminino , Humanos , Gradação de Tumores/métodos , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Mesoteliais/patologia , Neoplasias Ovarianas/metabolismo
18.
Antibiotics (Basel) ; 13(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38786109

RESUMO

Antimicrobial resistance (AMR) is one of the major global health and economic threats. There is growing concern about the emergence of AMR in food and the possibility of transmission of microorganisms possessing antibiotic resistance genes (ARGs) to the human gut microbiome. Shotgun sequencing and in vitro antimicrobial susceptibility testing were used in this study to provide a detailed characterization of the antibiotic resistance profile of bacteria and their ARGs in dromedary camel milk. Eight pooled camel milk samples, representative of multiple camels distributed in the Kuwait desert, were collected from retail stores and analyzed. The genotypic analysis showed the presence of ARGs that mediate resistance to 18 classes of antibiotics in camel milk, with the highest resistance to fluoroquinolones (12.48%) and disinfecting agents and antiseptics (9%). Furthermore, the results pointed out the possible transmission of the ARGs to other bacteria through mobile genetic elements. The in vitro antimicrobial susceptibility testing indicated that 80% of the isolates were resistant to different classes of antibiotics, with the highest resistance observed against three antibiotic classes: penicillin, tetracyclines, and carbapenems. Multidrug-resistant pathogens including Klebsiella pneumoniae, Escherichia coli, and Enterobacter hormaechei were also revealed. These findings emphasize the human health risks related to the handling and consumption of raw camel milk and highlight the necessity of improving the hygienic practices of farms and retail stores to control the prevalence of ARGs and their transmission.

19.
Oncogene ; 43(24): 1861-1876, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38664500

RESUMO

The base excision repair (BER) Apurinic/apyrimidinic endonuclease 1 (APE1) enzyme is endowed with several non-repair activities including miRNAs processing. APE1 is overexpressed in many cancers but its causal role in the tumorigenic processes is largely unknown. We recently described that APE1 can be actively secreted by mammalian cells through exosomes. However, APE1 role in EVs or exosomes is still unknown, especially regarding a putative regulatory function on vesicular small non-coding RNAs. Through dedicated transcriptomic analysis on cellular and vesicular small RNAs of different APE1-depleted cancer cell lines, we found that miRNAs loading into EVs is a regulated process, dependent on APE1, distinctly conveying RNA subsets into vesicles. We identified APE1-dependent secreted miRNAs characterized by enriched sequence motifs and possible binding sites for APE1. In 33 out of 34 APE1-dependent-miRNA precursors, we surprisingly found EXO-motifs and proved that APE1 cooperates with hnRNPA2B1 for the EV-sorting of a subset of miRNAs, including miR-1246, through direct binding to GGAG stretches. Using TCGA-datasets, we showed that these miRNAs identify a signature with high prognostic significance in cancer. In summary, we provided evidence that the ubiquitous DNA-repair enzyme APE1 is part of the EV protein cargo with a novel post-transcriptional role for this ubiquitous DNA-repair enzyme that could explain its role in cancer progression. These findings could open new translational perspectives in cancer biology.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , MicroRNAs , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Reparo do DNA/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Exossomos/metabolismo , Exossomos/genética , Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Regulação Neoplásica da Expressão Gênica
20.
Leukemia ; 38(7): 1511-1521, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38486128

RESUMO

Loss-of-function mutations in NFKBIE, which encodes for the NF-κB inhibitor IκBε, are frequent in chronic lymphocytic leukemia (CLL) and certain other B-cell malignancies and have been associated with accelerated disease progression and inferior responses to chemotherapy. Using in vitro and in vivo murine models and primary patient samples, we now show that NFKBIE-mutated CLL cells are selected by microenvironmental signals that activate the NF-κB pathway and induce alterations within the tumor microenvironment that can allow for immune escape, including expansion of CD8+ T-cells with an exhausted phenotype and increased PD-L1 expression on the malignant B-cells. Consistent with the latter observations, we find increased expression of exhaustion markers on T-cells from patients with NFKBIE-mutated CLL. In addition, we show that NFKBIE-mutated murine CLL cells display selective resistance to ibrutinib and report inferior outcomes to ibrutinib treatment in NFKBIE-mutated CLL patients. These findings suggest that NFKBIE mutations can contribute to CLL progression through multiple mechanisms, including a bidirectional crosstalk with the microenvironment and reduced sensitivity to BTK inhibitor treatment.


Assuntos
Adenina , Leucemia Linfocítica Crônica de Células B , Mutação , Piperidinas , Evasão Tumoral , Microambiente Tumoral , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/imunologia , Microambiente Tumoral/imunologia , Humanos , Animais , Camundongos , Adenina/análogos & derivados , Adenina/farmacologia , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Evasão Tumoral/genética , NF-kappa B/metabolismo , Linfócitos T CD8-Positivos/imunologia , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA