RESUMO
Epidemiological models are increasingly used to predict epidemics and improve management strategies. However, they rarely consider landscape characteristics although such characteristics can influence the epidemic dynamics and, thus, the effectiveness of disease management strategies. Here, we present a generic in silico approach which assesses the influence of landscape aggregation on the costs associated with an epidemic and on improved management strategies. We apply this approach to sharka, one of the most damaging diseases of Prunus trees, for which a management strategy is already applied in France. Epidemic simulations were carried out with a spatiotemporal stochastic model under various management strategies in landscapes differing in patch aggregation. Using sensitivity analyses, we highlight the impact of management parameters on the economic output of the model. We also show that the sensitivity analysis can be exploited to identify several strategies that are, according to the model, more profitable than the current French strategy. Some of these strategies are specific to a given aggregation level, which shows that management strategies should generally be tailored to each specific landscape. However, we also identified a strategy that is efficient for all levels of landscape aggregation. This one-size-fits-all strategy has important practical implications because of its simple applicability at a large scale.
Assuntos
Doenças das Plantas , Prunus , Produtos Agrícolas , França , Doenças das Plantas/prevenção & controle , Prunus/virologia , ÁrvoresRESUMO
During the past decade, knowledge of pathogen life history has greatly benefited from the advent and development of molecular epidemiology. This branch of epidemiology uses information on pathogen variation at the molecular level to gain insights into a pathogen's niche and evolution and to characterize pathogen dispersal within and between host populations. Here, we review molecular epidemiology approaches that have been developed to trace plant virus dispersal in landscapes. In particular, we highlight how virus molecular epidemiology, nourished with powerful sequencing technologies, can provide novel insights at the crossroads between the blooming fields of landscape genetics, phylogeography, and evolutionary epidemiology. We present existing approaches and their limitations and contributions to the understanding of plant virus epidemiology.