RESUMO
Intracellular Ca(2+) spikes trigger cell proliferation, differentiation and cytoskeletal reorganization. In addition to Ca(2+) spiking that can be initiated by a ligand binding to its receptor, exposure to electromagnetic stimuli has also been shown to alter Ca(2+) dynamics. Using neuronal cells differentiated from a mouse embryonic stem cell line and a custom-built, frequency-tunable applicator, we examined in real time the altered Ca(2+) dynamics and observed increases in the cytosolic Ca(2+) in response to nonthermal radiofrequency (RF)-radiation exposure of cells from 700 to 1100 MHz. While about 60% of control cells (not exposed to RF radiation) were observed to exhibit about five spontaneous Ca(2+) spikes per cell in 60 min, exposure of cells to an 800 MHz, 0.5 W/kg RF radiation, for example, significantly increased the number of Ca(2+) spikes to 15.7+/-0.8 (P<0.05). The increase in the Ca(2+) spiking activities was dependent on the frequency but not on the SAR between 0.5 to 5 W/kg. Using pharmacological agents, it was found that both the N-type Ca(2+) channels and phospholipase C enzymes appear to be involved in mediating increased Ca(2+) spiking. Interestingly, microfilament disruption also prevented the Ca(2+) spikes. Regulation of Ca(2+) dynamics by external physical stimulation such as RF radiation may provide a noninvasive and useful tool for modulating the Ca(2+)-dependent cellular and molecular activities of cells seeded in a 3D environment for which only a few techniques are currently available to influence the cells.
Assuntos
Sinalização do Cálcio/fisiologia , Sinalização do Cálcio/efeitos da radiação , Cálcio/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Animais , Canais de Cálcio Tipo L/fisiologia , Canais de Cálcio Tipo L/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Relação Dose-Resposta à Radiação , Temperatura Alta , Taxa de Depuração Metabólica/efeitos da radiação , Camundongos , Neurônios/efeitos da radiação , Doses de Radiação , Ondas de Rádio , Células-Tronco/efeitos da radiaçãoRESUMO
The phospholipid monolayer spread at a hydrocarbon-electrolyte interface can be used as a model system for the plasma membrane and its properties and structure probed by measurements of surface pressure and surface potential. To facilitate such studies, (i) the theory of the vibrating plate (Kelvin) method of measuring surface potentials is reëxamined and a new interpretation given for the potentials measured and (ii) a new apparatus for performing these measurements is described. The theory and apparatus are illustrated by measurements on films of distearoyl phosphatidylcholine at the interface between 2,2,4-trimethylpentane (isooctane) and 0.1 M NaCl.
Assuntos
Membranas Artificiais , Fosfolipídeos , Membrana Celular/fisiologia , Eletrólitos , Hidrocarbonetos , Matemática , Potenciais da Membrana , Modelos BiológicosRESUMO
Measurements of surface pressure of surface potential are reported for films of distearoyl phosphatidylcholine (density range: 0.15--2.65 . 10(18) molecules/m2) spread at the interface between 2,2,4-trimethylpentane and 100 mM NaCl. Low density behavior of the surface pressure is explained using classical viral theory. The behavior of the surface potential is qualitatively explained for all densities in terms of the dipole moments associated with the carboxyl groups and headgroups of the phosphatidylcholine.
Assuntos
Membranas Artificiais , Fosfatidilcolinas , Eletrólitos , Hidrocarbonetos , Matemática , Pressão , Propriedades de Superfície , TermodinâmicaRESUMO
The trivalent rare earth lanthanum was substituted for calcium in the sea water bathing the exterior of an "artificial node" of a lobster axon in a sucrose gap. It caused a progressive rise in threshold, and a decrease in the height of the action potential as well as in its rates of rise and fall. Prolonged application produced an excitation block. Voltage-clamp studies of the ionic currents showed that the time courses of the ionic conductance changes for both sodium and potassium were increased. Concurrently, the potentials at which the conductance increases occurred were shifted to more positive inside values for the La+++ sea water. These effects resemble changes resulting from a high external calcium concentration. Over and above this, La+++ also causes a marked reduction in the maximum amount of conductance increase following a depolarizing potential step. Membrane action potentials similar to those observed experimentally in the La+++ solution have been computed with appropriate parameter changes in the Hodgkin-Huxley equations.
Assuntos
Potenciais de Ação/fisiologia , Axônios/metabolismo , Cálcio/farmacocinética , Lantânio/farmacocinética , Potenciais de Ação/efeitos dos fármacos , Animais , Nephropidae , Técnicas de Patch-Clamp , Água do Mar , Sódio/metabolismoRESUMO
The problem of measuring a spatially varying specific absorption rate (SAR) by thermal techniques is treated both analytically and numerically. It is shown that, unless the measurement is attempted at an inflection point of the SAR distribution, it will be confounded by thermal diffusion within the medium. Rules of thumb are provided to enable the experimenter to gauge the thermal conduction contributions (i.e. error) to the thermally determined SAR near a spatial extremum. The simplest of these is that the width t(m) [s] of the time window, over which temperature variation associated with SAR is measured, should satisfy the inequality t(m)
Assuntos
Radiometria/métodos , Absorção , Difusão , Temperatura Alta , Modelos Biológicos , Análise Numérica Assistida por Computador , Radiometria/estatística & dados numéricos , TermodinâmicaRESUMO
Peripheral blood samples collected from four healthy nonsmoking human volunteers were diluted with tissue culture medium and exposed in vitro for 24 h to 847.74 MHz radiofrequency (RF) radiation (continuous wave), a frequency employed for cellular telephone communications. A code division multiple access (CDMA) technology was used with a nominal net forward power of 75 W and a nominal power density of 950 W/m(2) (95 mW/cm(2)). The mean specific absorption rate (SAR) was 4.9 or 5.5 W/kg. Blood aliquots that were sham-exposed or exposed in vitro to an acute dose of 1.5 Gy of gamma radiation were included in the study as controls. The temperatures of the medium during RF-radiation and sham exposures in the Radial Transmission Line facility were controlled at 37 +/- 0.3 degrees C. Immediately after the exposures, lymphocytes were cultured at 37 +/- 1 degrees C for 48 or 72 h. The extent of genetic damage was assessed from the incidence of chromosome aberrations and micronuclei. The kinetics of cell proliferation was determined from the mitotic indices in 48-h cultures and from the incidence of binucleate cells in 72-h cultures. The data indicated no significant differences between RF-radiation-exposed and sham-exposed lymphocytes with respect to mitotic indices, frequencies of exchange aberrations, excess fragments, binucleate cells, and micronuclei. The response of gamma-irradiated lymphocytes was significantly different from that of both RF-radiation-exposed and sham-exposed cells for all of these indices. Thus there was no evidence for induction of chromosome aberrations and micronuclei in human blood lymphocytes exposed in vitro for 24 h to 847.74 MHz RF radiation (CDMA) at SARs of 4.9 or 5.5 W/kg.
Assuntos
Aberrações Cromossômicas , Linfócitos/efeitos da radiação , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Ondas de Rádio/efeitos adversos , Telefone , Adulto , Feminino , Humanos , Linfócitos/ultraestrutura , Masculino , Pessoa de Meia-IdadeRESUMO
There have been allegations in the media and in the courts that cell phones and other types of hand-held transceivers are a cause of cancer. There have also been numerous public objections to the siting of TV, radio and cell phone transmission facilities because of a fear of cancer induction. A recent publication in Radiation Research by Repacholi et al. (147, 631-640, 1997) which suggests that exposure to radiofrequency (RF) radiation may increase lymphoma incidence in mice has contributed to this controversy. The goal of this review is to provide biomedical researchers a brief overview of the existing RF radiation-cancer studies. This article begins with a brief review of the physics and technology of cell phones. It then reviews the existing epidemiological studies of RF radiation, identifying gaps in our knowledge. Finally, the review discusses the cytogenetics literature on RF radiation and the whole-animal RF-radiation carcinogenesis studies. The epidemiological evidence for an association between RF radiation and cancer is found to be weak and inconsistent, the laboratory studies generally do not suggest that cell phone RF radiation has genotoxic or epigenetic activity, and a cell phone RF radiation-cancer connection is found to be physically implausible. Overall, the existing evidence for a causal relationship between RF radiation from cell phones and cancer is found to be weak to nonexistent.
Assuntos
Neoplasias Induzidas por Radiação/etiologia , Ondas de Rádio/efeitos adversos , Animais , Aberrações Cromossômicas , Dano ao DNA , Humanos , Linfócitos/efeitos da radiação , Linfócitos/ultraestrutura , Camundongos , Exposição Ocupacional/efeitos adversos , Radar , Doses de Radiação , RatosRESUMO
Recent reports suggest that exposure to 2450 MHz electromagnetic radiation causes DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) in cells of rat brain irradiated in vivo (Lai and Singh, Bioelectromagnetics 16, 207-210, 1995; Int. J. Radiat. Biol. 69, 513-521, 1996). Therefore, we endeavored to determine if exposure of cultured mammalian cells in vitro to 2450 MHz radiation causes DNA damage. The alkaline comet assay (single-cell gel electrophoresis), which is reportedly the most sensitive method to assay DNA damage in individual cells, was used to measure DNA damage after in vitro 2450 MHz irradiation. Exponentially growing U87MG and C3H 10T1/2 cells were exposed to 2450 MHz continuous-wave (CW) radiation in specially designed radial transmission lines (RTLs) that provided relatively uniform microwave exposure. Specific absorption rates (SARs) were calculated to be 0.7 and 1.9 W/kg. Temperatures in the RTLs were measured in real time and were maintained at 37 +/- 0.3 degrees C. Every experiment included sham exposure(s) in an RTL. Cells were irradiated for 2 h, 2 h followed by a 4-h incubation at 37 degrees C in an incubator, 4 h and 24 h. After these treatments samples were subjected to the alkaline comet assay as described by Olive et al. (Exp. Cell Res. 198, 259-267, 1992). Images of comets were digitized and analyzed using a PC-based image analysis system, and the "normalized comet moment" and "comet length" were determined. No significant differences were observed between the test group and the controls after exposure to 2450 MHz CW irradiation. Thus 2450 MHz irradiation does not appear to cause DNA damage in cultured mammalian cells under these exposure conditions as measured by this assay.
Assuntos
Dano ao DNA , DNA/efeitos da radiação , Campos Eletromagnéticos , Ondas de Rádio , Animais , Células Cultivadas , Relação Dose-Resposta à Radiação , Humanos , Camundongos , Camundongos Endogâmicos C3HRESUMO
Mouse C3H 10T1/2 fibroblasts and human glioblastoma U87MG cells were exposed to cellular phone communication frequency radiations to investigate whether such exposure produces DNA damage in in vitro cultures. Two types of frequency modulations were studied: frequency-modulated continuous-wave (FMCW), with a carrier frequency of 835.62 MHz, and code-division multiple-access (CDMA) centered on 847.74 MHz. Exponentially growing (U87MG and C3H 10T1/2 cells) and plateau-phase (C3H 10T1/2 cells) cultures were exposed to either FMCW or CDMA radiation for varying periods up to 24 h in specially designed radial transmission lines (RTLs) that provided relatively uniform exposure with a specific absorption rate (SAR) of 0.6 W/kg. Temperatures in the RTLs were monitored continuously and maintained at 37 +/- 0.3 degrees C. Sham exposure of cultures in an RTL (negative control) and 137Cs gamma-irradiated samples (positive control) were included with every experiment. The alkaline comet assay as described by Olive et al. (Exp. Cell Res. 198, 259-269, 1992) was used to measure DNA damage. No significant differences were observed between the test group exposed to FMCW or CDMA radiation and the sham-treated negative controls. Our results indicate that exposure of cultured mammalian cells to cellular phone communication frequencies under these conditions at an SAR of 0.6 W/kg does not cause DNA damage as measured by the alkaline comet assay.
Assuntos
Dano ao DNA , DNA/efeitos da radiação , Campos Eletromagnéticos , Ondas de Rádio , Telefone , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C3HRESUMO
Freshly collected peripheral blood samples from four healthy human volunteers were diluted with RPMI 1640 tissue culture medium and exposed in sterile T-75 tissue culture flasks in vitro for 24 h to 835.62 MHz radiofrequency (RF) radiation, a frequency employed for customer-to-base station transmission of cellular telephone communications. An analog signal was used, and the access technology was frequency division multiple access (FDMA, continuous wave). A nominal net forward power of 68 W was used, and the nominal power density at the center of the exposure flask was 860 W/m(2). The mean specific absorption rate in the exposure flask was 4.4 or 5.0 W/kg. Aliquots of diluted blood that were sham-exposed or exposed in vitro to an acute dose of 1.50 Gy of gamma radiation were used as negative or positive controls. Immediately after the exposures, the lymphocytes were stimulated with a mitogen, phytohemagglutinin, and cultured for 48 or 72 h to determine the extent of genetic damage, as assessed from the frequencies of chromosomal aberrations and micronuclei. The extent of alteration in the kinetics of cell proliferation was determined from the mitotic indices in 48-h cultures and from the incidence of binucleate cells in 72-h cultures. The data indicated no significant differences between RF-radiation- and sham-exposed lymphocytes with respect to mitotic indices, incidence of exchange aberrations, excess fragments, binucleate cells, and micronuclei. In contrast, the response of the lymphocytes exposed to gamma radiation was significantly different from both RF-radiation- and sham-exposed cells for all of these indices. Thus, under the experimental conditions tested, there is no evidence for the induction of chromosomal aberrations and micronuclei in human blood lymphocytes exposed in vitro for 24 h to 835.62 MHz RF radiation at SARs of 4.4 or 5.0 W/kg.
Assuntos
Aberrações Cromossômicas , Linfócitos/efeitos da radiação , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Ondas de Rádio/efeitos adversos , Telefone , Adulto , Divisão Celular/efeitos dos fármacos , Divisão Celular/efeitos da radiação , Feminino , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/efeitos da radiação , Linfócitos/ultraestrutura , Masculino , Pessoa de Meia-Idade , Índice Mitótico , Fito-Hemaglutininas/farmacologiaRESUMO
The effect of radiofrequency (RF) radiation in the cellular phone communication range (835.62 MHz frequency division multiple access, FDMA; 847.74 MHz code division multiple access, CDMA) on neoplastic transformation frequency was measured using the in vitro C3H 10T(1/2) cell transformation assay system. To determine if 835.62 MHz FDMA or 847.74 MHz CDMA radiations have any genotoxic effects that induce neoplastic transformation, C3H 10T(1/2) cells were exposed at 37 degrees C to either of the above radiations [each at a specific absorption rate (SAR) of 0.6 W/kg] or sham-exposed at the same time for 7 days. After the culture medium was changed, the cultures were transferred to incubators and refed with fresh growth medium every 7 days. After 42 days, the cells were fixed and stained with Giemsa, and transformed foci were scored. To determine if exposure to 835.62 MHz FDMA or 847.74 MHz CDMA radiation has any epigenetic effects that can promote neoplastic transformation, cells were first exposed to 4.5 Gy of X rays to induce the transformation process and then exposed to the above radiations (SAR = 0.6 W/kg) in temperature-controlled irradiators with weekly refeeding for 42 days. After both the 7-day RF exposure and the 42-day RF exposure after X irradiation, no statistically significant differences in the transformation frequencies were observed between incubator controls, the sham-exposed (maintained in irradiators without power to the antenna), and the 835.62 MHz FDMA or 847.74 MHz CDMA-exposed groups.
Assuntos
Transformação Celular Neoplásica/efeitos da radiação , Ondas de Rádio/efeitos adversos , Animais , Divisão Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Camundongos , Camundongos Endogâmicos C3H , Telefone , Raios X/efeitos adversosRESUMO
The present study was done to confirm the reported observation that low-intensity acute exposure to 2450 MHz radiation causes DNA single-strand breaks (Lai and Singh, Bioelectromagnetics 16, 207-210, 1995). Male Sprague-Dawley rats weighing approximately 250 g were irradiated with 2450 MHz continuous-wave (CW) microwaves for 2 h at a specific absorption rate of 1.2 W/kg in a cylindrical waveguide system (Guy et al., Radio Sci. 14, 63-74, 1979). There was no associated rise in the core body temperature of the rats. After the irradiation or sham treatments, rats were euthanized by either CO2 asphyxia or decapitation by guillotine (eight pairs of animals per euthanasia group). After euthanasia the brains were removed and immediately immersed in cold Ames medium and the cells of the cerebral cortex and the hippocampus were dissociated separately and subjected to the alkaline comet assay. Irrespective of whether the rats were euthanized by CO2 asphyxia or decapitated by guillotine, no significant differences were observed between either the comet length or the normalized comet moment of cells from either the cerebral cortex or the hippocampus of sham-treated rats and those from the irradiated rats. However, the data for the rats asphyxiated with CO2 showed more intrinsic DNA damage and more experiment-to-experiment variation than did the data for rats euthanized by guillotine. Therefore, the guillotine method of euthanasia is the most appropriate in studies relating to DNA damage. Furthermore, we did not confirm the observation that DNA damage is produced in cells of the rat cerebral cortex or the hippocampus after a 2-h exposure to 2450 MHz CW microwaves or at 4 h after the exposure.
Assuntos
Encéfalo/efeitos da radiação , Dano ao DNA , Eutanásia , Micro-Ondas , Animais , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
This study was designed to determine whether two differently modulated radiofrequencies of the type generally used in cellular phone communications could elicit a general stress response in a biological system. The two modulations and frequencies studied were a frequency-modulated continuous wave (FMCW) with a carrier frequency of 835.62 MHz and a code division multiple-access (CDMA) modulation centered on 847.74 MHz. Changes in proto-oncogene expression, determined by measuring Fos, Jun, and Myc mRNA levels as well as by the DNA-binding activity of the AP1, AP2 and NF-kappaB transcription factors, were used as indicators of a general stress response. The effect of radiofrequency exposure on proto-oncogene expression was assessed (1) in exponentially growing C3H 10T 1/2 mouse embryo fibroblasts during their transition to plateau phase and (2) during transition of serum-deprived cells to the proliferation cycle after serum stimulation. Exposure of serum-deprived cells to 835.62 MHz FMCW or 847.74 MHz CDMA microwaves (at an average specific absorption rate, SAR, of 0.6 W/kg) did not significantly change the kinetics of proto-oncogene expression after serum stimulation. Similarly, these exposures did not affect either the Jun and Myc mRNA levels or the DNA-binding activity of AP1, AP2 and NF-kappaB in exponential cells during transit to plateau-phase growth. Therefore, these results suggest that the radiofrequency exposure is unlikely to elicit a general stress response in cells of this cell line under these conditions. However, statistically significant increases (approximately 2-fold, P = 0.001) in Fos mRNA levels were detected in exponential cells in transit to the plateau phase and in plateau-phase cells exposed to 835.62 MHz FMCW microwaves. For 847.74 MHz CDMA exposure, the increase was 1.4-fold (P = 0.04). This increase in Fos expression suggests that expression of specific genes could be affected by radiofrequency exposure.
Assuntos
Proto-Oncogenes/efeitos da radiação , Ondas de Rádio/efeitos adversos , Telefone , Fatores de Transcrição/metabolismo , Animais , Ciclo Celular , Linhagem Celular , Meios de Cultura , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica/efeitos da radiação , Genes fos/efeitos da radiação , Genes jun/efeitos da radiação , Genes myc/efeitos da radiação , Camundongos , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/etiologia , Estresse Fisiológico/genética , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-2RESUMO
The intracranial 9L tumor model was used to determine if exposure to a radiofrequency (RF) electromagnetic field similar to those used in cellular telephone has any effects on the growth of a central nervous system tumor. Fischer 344 rats implanted with different numbers of 9L gliosarcoma cells were exposed to 835.62 MHz frequency-modulated continuous wave (FMCW) or 847.74 MHz code division multiple access (CDMA) RF field with nominal slot-average specific absorption rates in the brain of 0.75 +/- 0.25 W/kg. The animals were exposed to the RF field for 4 h a day, 5 days a week starting 4 weeks prior to and up to 150 days after the implantation of tumor cells. Among sham-exposed animals injected with 2 to 10 viable cells (group 1), the median survival was 70 days, with 27% of the animals surviving at 150 days. The median survival length and final survival fraction for animals injected with 11 to 36 viable cells (group 2) were 52 days and 14%, respectively, while the values for those injected with 37 to 100 cells (group 3) were 45 days and 0%. The animals exposed to CDMA or FMCW had similar survival parameters, and the statistical comparison of the survival curves for each of the groups 1, 2 and 3 showed no significant differences compared to sham-exposed controls.
Assuntos
Neoplasias Encefálicas/patologia , Divisão Celular/efeitos da radiação , Campos Eletromagnéticos , Gliossarcoma/patologia , Ondas de Rádio , Animais , Masculino , Ratos , Ratos Endogâmicos F344 , Taxa de Sobrevida , Telefone , Células Tumorais CultivadasRESUMO
PURPOSE: To determine the incidence of micronuclei in peripheral blood and bone marrow cells of rats exposed continuously for 24h to 2450 MHz continuous wave radiofrequency radiation (RFR) at an average whole-body specific absorption rate (SAR) of 12W/kg. MATERIALS AND METHODS: Eight adult male Sprague-Dawley rats were exposed to 2450 MHz RFR in circularly polarized waveguides. Eight sham-exposed rats were kept in similar waveguides without the transmission of RFR. Four rats were treated with mitomycin-C (MMC) and used as positive controls. All rats were necropsied 24h after the end of RFR and sham exposures, and after the 24h treatment with MMC. Peripheral blood and bone marrow smears were examined to determine the frequency of micronuclei (MN) in polychromatic erythrocytes (PCE). RESULTS: The results indicated that the incidence of MN/2000 PCE were not significantly different between RFR- and sham-exposed rats. The group mean frequencies of MN in the peripheral blood were 2.3+/-0.7 in RFR-exposed rats and 2.1+/-0.6 in sham-exposed rats. In bone marrow cells, the average MN incidence was 3.8+/-1.0 in RFR-exposed rats and 3.4+/-0.7 in sham-exposed rats. The corresponding values in positive control rats treated with MMC were 23.5+/-4.7 in the peripheral blood and 33.8+/-7.4 in bone marrow cells. CONCLUSION: There was no evidence for the induction of MN in peripheral blood and bone marrow cells of rats exposed for 24h to 2450 MHz continuous wave RFR at a whole body average SAR of 12 W/kg.
Assuntos
Células Sanguíneas/efeitos da radiação , Células da Medula Óssea/efeitos da radiação , Testes para Micronúcleos , Animais , Células Sanguíneas/fisiologia , Células da Medula Óssea/fisiologia , Eritrócitos/fisiologia , Eritrócitos/efeitos da radiação , Masculino , Ondas de Rádio , Ratos , Ratos Sprague-DawleyRESUMO
PURPOSE: To investigate the effect of 2450 MHz pulsed-wave microwaves on the induction of DNA damage in brain cells of exposed rats and to discover whether proteinase K is needed to detect DNA damage in the brain cells of rats exposed to 2450 MHz microwaves. MATERIALS AND METHODS: Sprague-Dawley rats were exposed to 2450 MHz pulsed-wave microwaves and sacrificed 4 h after a 2-h exposure. Rats irradiated whole-body with 1 Gy (137)Cs were included as positive controls. DNA damage was assayed by two variants of the alkaline comet assay on separate aliquots of the same cell preparation. RESULTS: Significant DNA damage was observed in the rat brain cells of rats exposed to gamma-rays using both versions of the alkaline comet assay independent of the presence or absence of proteinase K. However, neither version of the assay could detect any difference in comet length and/or normalized comet moment between sham- and 2450 MHz pulsed-wave microwave-exposed rats, regardless of the inclusion or omission of proteinase K in the comet assay. CONCLUSIONS: No DNA damage in brain cells was detected following exposure of rats to 2450 MHz microwaves pulsed-wave at a specific absorption rate of 1.2 W kg(-1) regardless of whether or not proteinase K was included in the assay. Thus, the results support the conclusion that low-level 2450 MHz pulsed-wave microwave exposures do not induce DNA damage detectable by the alkaline comet assay.
Assuntos
Encéfalo/efeitos da radiação , Ensaio Cometa/métodos , Dano ao DNA , DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Micro-Ondas , Neurônios/efeitos da radiação , Animais , Encéfalo/efeitos dos fármacos , Células Cultivadas , Ensaio Cometa/instrumentação , DNA/efeitos dos fármacos , Endopeptidase K/farmacologia , Raios gama , Masculino , Neurônios/efeitos dos fármacos , Doses de Radiação , Radiometria , Ratos , Ratos Sprague-Dawley , Irradiação Corporal TotalRESUMO
The effect of dielectric loading on the cell layer specific absorption rate (SAR) within a T-75 culture flask being irradiated within a transverse electromagnetic (TEM) cell was studied both experimentally and numerically. Direct thermal measurements of a T-75 containing 40 mL of culture medium and resting upon a 3-mm-thick slab of alumina ceramic (epsilon r = 9.6) revealed that, compared to the same flask resting upon a foam slab (epsilon r = 1.0) of the same thickness, the average SAR at the cell layer was increased roughly fourfold. This fourfold increase is significant experimentally because it allows biologists to perform experiments over a larger range of SAR values needed to determine possible dose-response curves without the costs and difficulties of a fourfold increase in amplifier power. Finite-difference time-domain (FDTD) simulations of the SAR distribution were in good quantitative agreement with the experimental measurements. It is concluded that FDTD modeling can be a cost effective and scientifically acceptable means of obviating the thermal measurement of SAR.
Assuntos
Técnicas de Cultura de Células/métodos , Campos Eletromagnéticos , Modelos Biológicos , Absorção , Simulação por Computador , Apresentação de Dados , Temperatura , TermômetrosRESUMO
Single, giant cells of the eukaryotic green algae Chara braunii and Nitella flexilis were subjected to short-, intermediate-, and long-term irradiations with 2.45-GHz microwaves. A search was carried out for radiation-correlated shifts (i) in both the dc level and the rms low-frequency excess noise of the vacuolar potential and (ii) in the membrane resistivity. No reliable shifts were observed, either in normal cells or in cells subjected to reduced temperatures or the poison ethacrynic acid.