Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Biomech ; 157: 111700, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37478803

RESUMO

So far, the prevalent rupture risk quantification of aortic aneurysms does not consider information of the underlying microscopic mechanisms. Uniaxial tension tests were performed on imaged aorta samples oriented in circumferential and longitudinal directions. To account for local heterogeneity in collagen fiber architecture, SHG imaging was performed on tissues at several locations prior to mechanical testing. This enabled the quantification of micro-scale information including organization of collagen fibers using relevant probability density functions. Two different modeling approaches are presented in this study for the sake of comparison. A multi-scale mechanical model was developed using this micro-structural information with collagen fibers as main components. accounting for non-affine fiber kinematics. Simultaneously, an embedded element model that accounts for affine fiber kinematics was developed in Abaqus using the same micro-structural information. Numerical simulations emulating uniaxial tension experiments were performed on the developed models. Global mechanical response of both models agreed well with the experimental data, although leading to mismatched material properties. The models present a rudimentary yet better than before representation of structure based description of aortic-tissue failure mechanics. reinforcing the importance of structural organization of micro-scale constituents and their kinematics in determining tissue failure.


Assuntos
Artérias , Colágeno , Colágeno/química , Estresse Mecânico , Aorta , Matriz Extracelular , Fenômenos Biomecânicos
2.
Biomech Model Mechanobiol ; 22(5): 1589-1605, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37024600

RESUMO

In the current study, we developed a new computational methodology to simulate wound healing in soft tissues. We assumed that the injured tissue recovers partially its mechanical strength and stiffness by gradually increasing the volume fraction of collagen fibers. Following the principles of the constrained mixture theory, we assumed that new collagen fibers are deposited at homeostatic tension while the already existing tissue undergoes a permanent deformation due to the effects of remodeling. The model was implemented in the finite-element software Abaqus® through a VUMAT subroutine and applied to a complex and realistic case: simulating wound healing following midline laparotomy closure. The incidence of incisional hernia is still quite significant clinically, and our goal was to investigate different conditions hampering the success of these procedures. We simulated wound healing over periods of 6 months on a patient-specific geometry. One of the outcomes of the finite-element simulations was the width of the wound tissue, which was found to be clinically correlated with the development of incisional hernia after midline laparotomy closure. We studied the impact of different suturing modalities and the effects of situations inducing increased intra-abdominal pressure or its intermittent variations such as coughing. Eventually, the results showed that the main risks of developing an incisional hernia mostly depend on the elastic strains reached in the wound tissue after degradation of the suturing wires. Despite the need for clinical validation, these results are promising for establishing a digital twin of wound healing in midline laparotomy incision.


Assuntos
Hérnia Incisional , Humanos , Hérnia Incisional/etiologia , Laparotomia/efeitos adversos , Laparotomia/métodos , Técnicas de Sutura/efeitos adversos , Cicatrização , Colágeno
3.
Front Physiol ; 14: 1148540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064913

RESUMO

Endoluminal reconstruction using flow diverters represents a novel paradigm for the minimally invasive treatment of intracranial aneurysms. The configuration assumed by these very dense braided stents once deployed within the parent vessel is not easily predictable and medical volumetric images alone may be insufficient to plan the treatment satisfactorily. Therefore, here we propose a fast and accurate machine learning and reduced order modelling framework, based on finite element simulations, to assist practitioners in the planning and interventional stages. It consists of a first classification step to determine a priori whether a simulation will be successful (good conformity between stent and vessel) or not from a clinical perspective, followed by a regression step that provides an approximated solution of the deployed stent configuration. The latter is achieved using a non-intrusive reduced order modelling scheme that combines the proper orthogonal decomposition algorithm and Gaussian process regression. The workflow was validated on an idealized intracranial artery with a saccular aneurysm and the effect of six geometrical and surgical parameters on the outcome of stent deployment was studied. We trained six machine learning models on a dataset of varying size and obtained classifiers with up to 95% accuracy in predicting the deployment outcome. The support vector machine model outperformed the others when considering a small dataset of 50 training cases, with an accuracy of 93% and a specificity of 97%. On the other hand, real-time predictions of the stent deployed configuration were achieved with an average validation error between predicted and high-fidelity results never greater than the spatial resolution of 3D rotational angiography, the imaging technique with the best spatial resolution (0.15 mm). Such accurate predictions can be reached even with a small database of 47 simulations: by increasing the training simulations to 147, the average prediction error is reduced to 0.07 mm. These results are promising as they demonstrate the ability of these techniques to achieve simulations within a few milliseconds while retaining the mechanical realism and predictability of the stent deployed configuration.

4.
J Mech Behav Biomed Mater ; 132: 105273, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35617821

RESUMO

The most common method to study the mechanical behavior of soft tissue is to test animal specimens, which should be prepared as soon as possible after the death to avoid biological deterioration effects such as rigor mortis. Freezing and cryo-preservation could allow extending the time between procurement and implantation. From a mechanical perspective, tissue preservation could influence mechanical testing results. Therefore, this study focuses on the influence of cryo-preserved samples on their mechanical behavior, especially at the rupture. In order to analyze this aspect, two tests were performed on the porcine abdominal wall. A tensile test to study the elastic behavior of samples and the tensile strength until rupture. A peeling test to more finely investigate the cohesion between muscle fibers. No statistical difference could be observed following tensile test. However, peeling tests between cryo-preserved and control samples showed a clear statistical difference with a p-value of 0.0097 for Gp. Indeed, energy release rate was higher for the Cryo-preserve group than the Control group with Gp = 0.36 ± 0.07 N/mm vs 0.26 ± 0.10 N/mm. This difference suggests that the characterization of rupture energies for muscular tissue should be done without having frozen the samples, even with a cryopreservative agent. These results could also indicate that even if the rupture mode is the same between mechanical tests, a different rupture direction could imply different mechanical preservations for soft tissues. This study could help to understand the difficult mechanical preservation of soft tissues, especially on the rupture behavior. Future studies on skeletal muscles will be necessary to compare our results, especially in peeling.


Assuntos
Fibras Musculares Esqueléticas , Animais , Fenômenos Biomecânicos , Ruptura , Estresse Mecânico , Suínos , Resistência à Tração
5.
J Mech Behav Biomed Mater ; 130: 105141, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35318168

RESUMO

Skin irritation is a common phenomenon that becomes a real concern when caused by the use of medical devices. Because the materials used for the design of these devices are usually carefully selected for chemical compatibility with the skin, it is reasonable to assume that the irritations result from the mechanical interaction between the devices and the skin. The aim of this work was to develop a new device to study both the shear strains in the layers of the skin, using Digital Image Correlation (DIC), and the friction behaviour of ex vivo skin interacting with objects. Pig skin samples with various surface preparations were tested in friction experiments involving different contacting materials encountered in the conception of medical devices. The measure of the static and dynamic coefficients of friction as well as the length of adhesion has highlighted the great influence of skin surface conditioning on friction properties. Strain maps obtained through DIC provided insights into the impact of friction and adhesion effects on shear strain distribution in the skin as a function of depth beneath its surface.


Assuntos
Animais , Fricção , Suínos
6.
IEEE Trans Biomed Eng ; 68(10): 2918-2929, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33523804

RESUMO

OBJECTIVE: Aortic dissection is a life-threatening event which starts most of the time with an intimal tear propagating along the aortic wall, while blood enters the medial layer and delaminates the medial lamellar units. Studies investigating the mechanisms underlying the initiation sequence of aortic dissection are rare in the literature, the majority of studies being focused on the propagation event. Numerical models can provide a deeper understanding of the phenomena involved during the initiation and the propagation of the initial tear, and how geometrical and mechanical parameters affect this event. In the present paper, we investigated the primary factors contributing to aortic dissection. METHODS: A two-layer arterial model with an initial tear was developed, representing three different possible configurations depending on the initial direction of the tear. Anisotropic damage initiation criteria were developed based on uniaxial and shear experiments from the literature to predict the onset and the direction of crack propagation. We used the XFEM-based cohesive segment method to model the initiation and the early propagation of the tear along the aorta. A design of experiment was used to quantify the influence of 7 parameters reflecting crack geometry and mechanics of the wall on the critical pressure triggering the dissection and the directions of propagation of the tear. RESULTS: The results showed that the obtained critical pressures (mean range from 206 to 251 mmHg) are in line with measurement from the literature. The medial tensile strength was found to be the most influential factor, suggesting that a medial degeneration is needed to reach a physiological critical pressure and to propagate a tear in an aortic dissection. The geometry of the tear and its location inside the aortic wall were also found to have an important role not only in the triggering of tear propagation, but also in the evolution of the tear into either aortic rupture or aortic dissection. A larger and deeper initial tear increases the risk of aortic dissection. CONCLUSION: The numerical model was able to reproduce the behaviour of the aorta during the initiation and propagation of an aortic dissection. In addition to confirm multiple results from the literature, different types of tears were compared and the influence of several geometrical and mechanical parameters on the critical pressure and direction of propagation was evaluated with a parametric study for each tear configuration. SIGNIFICANCE: Although these results should be experimentally validated, they allow a better understanding of the phenomena behind aortic dissection and can help in improving the diagnosis and treatment of this disease.


Assuntos
Dissecção Aórtica , Dissecção Aórtica/diagnóstico por imagem , Aorta , Análise de Elementos Finitos , Humanos , Estresse Mecânico , Resistência à Tração
7.
J Mech Behav Biomed Mater ; 116: 104324, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33460911

RESUMO

Lesions of the Musculotendinous Unit (MTU, i.e. tendon, myotendinous junction, muscle, aponeurosis and myoaponeurotic junction) are a common injury and a leading cause of functional impairment, long-term pain, and/or physical disability worldwide. Though a large effort has been devoted to macroscopic failure evaluation, these injuries suffer from a lack of knowledge of the underlying tissue-scale micro-mechanisms triggering such lesions. More specifically, there is a strong need for experimental data to better understand and quantify damage initiation and propagation on MTUs. The present study presents original experimental data on muscle tissue extracted from the hamstring muscle group of rabbits under relevant mechanical solicitations up to rupture, revealing elementary micro-mechanisms and providing quantified values of elastic properties as well as initiation stress and energy release rate. More specifically, tensile, peeling and shear lap tests were performed to explore cohesion of muscle tissue along the fibre direction or across fibres (mode I) and in shear (mode II), as well as at the muscle/tendon interface. We show that muscle tissue is weaker in shear than tension (p-value < 0.01) and that the Biceps Femoris had the lowest energy release rate as calculated from mode I peeling tests (G = 0.23 ± 0.16 N/mm) compared to the Semi-Membranous (G = 0.53 ± 0.08 N/mm) and the Semi-Tendinous (0.45 ± 0.20 N/mm), and that this energy is the lowest at the musculotendinous junction. Our study suggests a preferred damage initiation mechanism based on fibre decohesion in mode I or II and provides quantitative data to model these phenomena. Results also suggest that the Biceps Femoris and more precisely its musculotendinous junction could be the weakest point of the hamstring group. These findings could be used as a basis to develop mechanical models (e.g. finite element) to better understand and predict the onset of hamstring lesions and help in preventing such events.


Assuntos
Músculos Isquiossurais , Traumatismos dos Tendões , Animais , Fenômenos Biomecânicos , Músculo Esquelético , Coelhos , Ruptura , Tração
8.
J Mech Behav Biomed Mater ; 114: 104210, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33338783

RESUMO

Textile-based implant (mesh) treatment is considered as a standard of care for abdominal wall hernia repair. Computational models and simulations have appeared as one of the most promising approach to investigate biomechanics related to hernia repair and to improve clinical outcomes. This paper presents a novel anisotropic hypo-elastoplastic constitutive model specifically established for surgical knitted textile implants. The major mechanical characteristics of these materials such as anisotropy and permanent set have been reproduced. For the first time ever, we report an extensive mechanical characterization of one of these meshes, including cyclic uniaxial tension, planar equibiaxial tension and plunger type testing. These tests highlight the complex mechanical behavior with strong nonlinearity, anisotropy and permanent set. The novel anisotropic hypo-elasto-plastic constitutive model has been identified based on the tensile experiments and validated successfully against the data of the plunger experiment. In the future, implementation of this characterization and modeling approach to additional surgical knitted textiles should be the direction to follow in order to develop clinical decision support software for abdominal wall repair.


Assuntos
Hérnia Ventral , Telas Cirúrgicas , Herniorrafia , Humanos , Teste de Materiais , Próteses e Implantes , Têxteis
9.
IEEE Rev Biomed Eng ; 14: 240-255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31905148

RESUMO

Aortic dissection is a life-threatening event associated with a very poor outcome. A number of complex phenomena are involved in the initiation and propagation of the disease. Advances in the comprehension of the mechanisms leading to dissection have been made these last decades, thanks to improvements in imaging and experimental techniques. However, the micro-mechanics involved in triggering such rupture events remains poorly described and understood. It constitutes the primary focus of the present review. Towards the goal of detailing the dissection phenomenon, different experimental and modeling methods were used to investigate aortic dissection, and to understand the underlying phenomena involved. In the last ten years, research has tended to focus on the influence of microstructure on initiation and propagation of the dissection, leading to a number of multiscale models being developed. This review brings together all these materials in an attempt to identify main advances and remaining questions.


Assuntos
Aorta , Dissecção Aórtica , Fenômenos Biomecânicos/fisiologia , Dissecção Aórtica/patologia , Dissecção Aórtica/fisiopatologia , Animais , Aorta/patologia , Aorta/fisiopatologia , Bovinos , Humanos , Camundongos , Modelos Cardiovasculares , Resistência ao Cisalhamento/fisiologia , Suínos
10.
Front Med Technol ; 3: 704806, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047943

RESUMO

Fenestrated Endovascular Aortic Repair, also known as FEVAR, is a minimally invasive procedure that allows surgeons to repair the aorta while still preserving blood flow to kidneys and other critical organs. Given the high complexity of FEVAR, there is a pressing need to develop numerical tools that can assist practitioners at the preoperative planning stage and during the intervention. The aim of the present study is to introduce and to assess an assistance solution named Fast Method for Virtual Stent-graft Deployment for computer assisted FEVAR. This solution, which relies on virtual reality, is based on a single intraoperative X-ray image. It is a hybrid method that includes the use of intraoperative images and a simplified mechanical model based on corotational beam elements. The method was verified on a phantom and validated on three clinical cases, including a case with fenestrations. More specifically, we quantified the errors induced by the different simplifications of the mechanical model, related to fabric simulation and aortic wall mechanical properties. Overall, all errors for both stent and fenestration positioning were less than 5 mm, making this method compatible with clinical expectations. More specifically, the errors related to fenestration positioning were less than 3 mm. Although requiring further validation with a higher number of test cases, our method could achieve an accuracy compatible with clinical specifications within limited calculation time, which is promising for future implementation in a clinical context.

11.
Artigo em Inglês | MEDLINE | ID: mdl-32637399

RESUMO

The mechanical behavior of the foot is often studied through the movement of the segments composing it and not through the movement of each individual bone, preventing an accurate and unambiguous study of soft tissue strains and foot posture. In order to describe the internal behavior of the foot under static load, we present here an original methodology that automatically tracks bone positions and ligament deformations through a series of CT acquisitions for a foot under load. This methodology was evaluated in a limited clinical study based on three cadaveric feet in different static load cases, first performed with bare feet and then with a sports shoe to get first insights on how the shoe influences the foot's behavior in different configurations. A model-based tracking technique using hierarchical distance minimization was implemented to track the position of 28 foot bones for each subject, while a mesh-morphing technique mapped the ligaments from a generic model to the patient-specific model in order to obtain their deformations. Comparison of these measurements between the ex vivo loaded bare foot and the shod foot showed evidence that wearing a shoe affects the deformation of specific ligaments, has a significant impact on the relative movement of the bones and alters the posture of the foot skeleton (plantar-dorsal flexion, arch sagging, and forefoot abduction-adduction on the midfoot). The developed method may provide new clinical indicators to guide shoe design and valuable data for detailed foot model validation.

12.
Artigo em Inglês | MEDLINE | ID: mdl-32984262

RESUMO

The cerebral meninges, made up of the dura, arachnoid, and pia mater, is a tri-layer membrane that surrounds the brain and the spinal cord and has an important function in protecting the brain from injury. Understanding its mechanical behavior is important to ensure the accuracy of finite element (FE) head model simulations which are commonly used in the study of traumatic brain injury (TBI). Mechanical characterization of freshly excised porcine dura-arachnoid mater (DAM) was achieved using uniaxial tensile testing and bulge inflation testing, highlighting the dependency of the identified parameters on the testing method. Experimental data was fit to the Ogden hyperelastic material model with best fit material parameters of µ = 450 ± 190 kPa and α = 16.55 ± 3.16 for uniaxial testing, and µ = 234 ± 193 kPa and α = 8.19 ± 3.29 for bulge inflation testing. The average ultimate tensile strength of the DAM was 6.91 ± 2.00 MPa (uniaxial), and the rupture stress at burst was 2.08 ± 0.41 MPa (inflation). A structural analysis using small angle light scattering (SALS) revealed that while local regions of highly aligned fibers exist, globally, there is no preferred orientation of fibers and the cerebral DAM can be considered to be structurally isotropic. This confirms the results of the uniaxial mechanical testing which found that there was no statistical difference between samples tested in the longitudinal and transversal direction (p = 0.13 for µ, p = 0.87 for α). A finite element simulation of a craniotomy procedure following brain swelling revealed that the mechanical properties of the meninges are important for predicting accurate stress and strain fields in the brain and meninges. Indeed, a simulation using a common linear elastic representation of the meninges was compared to the present material properties (Ogden model) and the intracranial pressure was found to differ by a factor of 3. The current study has provided researchers with primary experimental data on the mechanical behavior of the meninges which will further improve the accuracy of FE head models used in TBI.

13.
Biomech Model Mechanobiol ; 18(5): 1507-1528, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31065952

RESUMO

Abdominal aortic aneurysm is a prevalent cardiovascular disease with high mortality rates. The mechanical response of the arterial wall relies on the organizational and structural behavior of its microstructural components, and thus, a detailed understanding of the microscopic mechanical response of the arterial wall layers at loads ranging up to rupture is necessary to improve diagnostic techniques and possibly treatments. Following the common notion that adventitia is the ultimate barrier at loads close to rupture, in the present study, a finite element model of adventitial collagen network was developed to study the mechanical state at the fiber level under uniaxial loading. Image stacks of the rabbit carotid adventitial tissue at rest and under uniaxial tension obtained using multi-photon microscopy were used in this study, as well as the force-displacement curves obtained from previously published experiments. Morphological parameters like fiber orientation distribution, waviness, and volume fraction were extracted for one sample from the confocal image stacks. An inverse random sampling approach combined with a random walk algorithm was employed to reconstruct the collagen network for numerical simulation. The model was then verified using experimental stress-stretch curves. The model shows the remarkable capacity of collagen fibers to uncrimp and reorient in the loading direction. These results further show that at high stretches, collagen network behaves in a highly non-affine manner, which was quantified for each sample. A comprehensive parameter study to understand the relationship between structural parameters and their influence on mechanical behavior is presented. Through this study, the model was used to conclude important structure-function relationships that control the mechanical response. Our results also show that at loads close to rupture, the probability of failure occurring at the fiber level is up to 2%. Uncertainties in usually employed rupture risk indicators and the stochastic nature of the event of rupture combined with limited knowledge on the microscopic determinants motivate the development of such an analysis. Moreover, this study will advance the study of coupling microscopic mechanisms to rupture of the artery as a whole.


Assuntos
Túnica Adventícia/fisiologia , Colágenos Fibrilares/química , Modelos Cardiovasculares , Algoritmos , Animais , Fenômenos Biomecânicos , Simulação por Computador , Análise de Elementos Finitos , Masculino , Dinâmica não Linear , Porosidade , Probabilidade , Coelhos , Reprodutibilidade dos Testes , Estresse Mecânico , Resistência à Tração
14.
J Mech Behav Biomed Mater ; 99: 240-246, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31415992

RESUMO

The liver is the most commonly injured abdominal organ following either blunt or penetrating impact. Current mechanical properties available in the literature are typically only measured at low strain rates, low strains, or use linear viscoelastic models. There is also a dearth of high-rate, large strain, viscoelastic data available for liver tissue which are required to model the deformation of the liver during high-rate impacts. Furthermore, the issue of whether mouse liver's mechanical properties are sex-dependent has not been addressed previously. Here, we present the first in vitro sex- and age-controlled mechanical characterisation of mixed-strain (C57BL and wild-type) mouse liver tissue at a localised length scale using large-deformation and high strain rate micro-indentation. We also investigated the effects of age on the mechanical properties of liver tissue. Force-relaxation experiments were performed on both male and female mouse livers up to 35% strain at 10/s and allowed to relax for 1s. The neo-Hookean based quasi-linear viscoelastic model was fitted to the experimental data to determine the large-strain behaviour of the tissue. A comprehensive statistical analysis was performed to determine whether any significant differences existed for (i) the short-term shear moduli and (ii) long-term shear moduli between 10 weeks-old male and female mouse livers, and (iii) the short-term and (iv) long-term shear moduli for 6, 10, and 56 weeks-old mouse livers. No significant differences were found between the mechanical properties in the sex groups. The 56 weeks-old liver tissue was found to be significantly stiffer than the 6 weeks-old liver tissue, but not the 10 weeks-old.


Assuntos
Fatores Etários , Fígado/patologia , Fatores Sexuais , Estresse Mecânico , Animais , Elasticidade , Feminino , Análise de Elementos Finitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Estatísticos , Viscosidade
15.
Sci Rep ; 8(1): 11234, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030462

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

16.
Sci Rep ; 7(1): 13729, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061984

RESUMO

Traumatic brain injuries, the leading cause of death and disability in children and young adults, are the result of a rapid acceleration or impact of the head. In recent years, a global effort to better understand the biomechanics of TBI has been undertaken, with many laboratories creating detailed computational models of the head and brain. For these models to produce realistic results they require accurate regional constitutive data for brain tissue. However, there are large differences in the mechanical properties reported in the literature. These differences are likely due to experimental parameters such as specimen age, brain region, species, test protocols, and fiber direction which are often not reported. Furthermore, there is a dearth of reported viscoelastic properties for brain tissue at large-strain and high rates. Mouse, rat, and pig brains are impacted at 10/s to a strain of ~36% using a custom-built micro-indenter with a 125 µm radius. It is shown that the resultant mechanical properties are dependent on specimen-age, species, and region, under identical experimental parameters.


Assuntos
Encéfalo/citologia , Teste de Materiais , Fenômenos Mecânicos , Envelhecimento , Animais , Fenômenos Biomecânicos , Elasticidade , Feminino , Masculino , Camundongos , Ratos , Especificidade da Espécie , Estresse Mecânico , Temperatura , Viscosidade
17.
Acta Biomater ; 48: 309-318, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27777117

RESUMO

The brain is a complex organ made up of many different functional and structural regions consisting of different types of cells such as neurons and glia, as well as complex anatomical geometries. It is hypothesized that the different regions of the brain exhibit significantly different mechanical properties which may be attributed to the diversity of cells within individual brain regions. The regional viscoelastic properties of P56 mouse brain tissue, up to 70µm displacement, are presented and discussed in the context of traumatic brain injury, particularly how the different regions of the brain respond to mechanical loads. Force-relaxation data obtained from micro-indentation measurements were fit to both linear and quasi-linear viscoelastic models to determine the time and frequency domain viscoelastic response of the pons, cortex, medulla oblongata, cerebellum, and thalamus. The damping ratio of each region was also determined. Each region was found to have a unique mechanical response to the applied displacement, with the pons and thalamus exhibiting the largest and smallest force-response, respectively. All brain regions appear to have an optimal frequency for the dissipation of energies which lies between 1 and 10Hz. STATEMENT OF SIGNIFICANCE: We present the first mechanical characterization of the viscoelastic response for different regions of mouse brain. Force-relaxation tests are performed under large strain dynamic micro-indentation, and viscoelastic models are used subsequently, providing time-dependent mechanical properties of brain tissue under loading conditions comparable to what is experienced in TBI. The unique mechanical properties of different brain regions are highlighted, with substantial variations in the viscoelastic properties and damping ratio of each region. Cortex and pons were the stiffest regions, while the thalamus and medulla were most compliant. The cerebellum and thalamus had highest damping ratio values and those of the medulla were lowest. The reported material parameters can be implemented into finite element computer models of the mouse to investigate the effects of trauma on individual brain regions.


Assuntos
Encéfalo/fisiologia , Elasticidade , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Análise de Elementos Finitos , Camundongos , Fatores de Tempo , Viscosidade
18.
Acta Biomater ; 57: 384-394, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28501711

RESUMO

Traumatic brain injury (TBI) has become a recent focus of biomedical research with a growing international effort targeting material characterization of brain tissue and simulations of trauma using computer models of the head and brain to try to elucidate the mechanisms and pathogenesis of TBI. The meninges, a collagenous protective tri-layer, which encloses the entire brain and spinal cord has been largely overlooked in these material characterization studies. This has resulted in a lack of accurate constitutive data for the cranial meninges, particularly under dynamic conditions such as those experienced during head impacts. The work presented here addresses this lack of data by providing for the first time, in situ large deformation material properties of the porcine dura-arachnoid mater composite under dynamic indentation. It is demonstrated that this tissue is substantially stiffer (shear modulus, µ=19.10±8.55kPa) and relaxes at a slower rate (τ1=0.034±0.008s, τ2=0.336±0.077s) than the underlying brain tissue (µ=6.97±2.26kPa, τ1=0.021±0.007s, τ2=0.199±0.036s), reducing the magnitudes of stress by 250% and 65% for strains that arise during indentation-type deformations in adolescent brains. STATEMENT OF SIGNIFICANCE: We present the first mechanical analysis of the protective capacity of the cranial meninges using in situ micro-indentation techniques. Force-relaxation tests are performed on in situ meninges and cortex tissue, under large strain dynamic micro-indentation. A quasi-linear viscoelastic model is used subsequently, providing time-dependent mechanical properties of these neural tissues under loading conditions comparable to what is experienced in TBI. The reported data highlights the large differences in mechanical properties between these two tissues. Finite element simulations of the indentation experiments are also performed to investigate the protective capacity of the meninges. These simulations show that the meninges protect the underlying brain tissue by reducing the overall magnitude of stress by 250% and up to 65% for strains.


Assuntos
Aracnoide-Máter/fisiopatologia , Lesões Encefálicas Traumáticas/fisiopatologia , Córtex Cerebral/fisiopatologia , Dura-Máter/fisiopatologia , Estresse Mecânico , Animais , Feminino , Masculino , Suínos
19.
Sci Rep ; 6: 21569, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26898475

RESUMO

The brain is a complex organ made up of many different functional and structural regions consisting of different types of cells such as neurons and glia, as well as complex anatomical geometries. It is hypothesized that the different regions of the brain exhibit significantly different mechanical properties, which may be attributed to the diversity of cells and anisotropy of neuronal fibers within individual brain regions. The regional dynamic mechanical properties of P56 mouse brain tissue in vitro and in situ at velocities of 0.71-4.28 mm/s, up to a deformation of 70 µm are presented and discussed in the context of traumatic brain injury. The experimental data obtained from micro-indentation measurements were fit to three hyperelastic material models using the inverse Finite Element method. The cerebral cortex elicited a stiffer response than the cerebellum, thalamus, and medulla oblongata regions for all velocities. The thalamus was found to be the least sensitive to changes in velocity, and the medulla oblongata was most compliant. The results show that different regions of the mouse brain possess significantly different mechanical properties, and a significant difference also exists between the in vitro and in situ brain.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Mapeamento Encefálico , Córtex Cerebral/anatomia & histologia , Estresse Mecânico , Animais , Anisotropia , Simulação por Computador , Elasticidade , Análise de Elementos Finitos , Camundongos
20.
Artigo em Inglês | MEDLINE | ID: mdl-24050812

RESUMO

Knee orthotic devices are commonly prescribed by physicians and medical practitioners for preventive or therapeutic purposes on account of their claimed effect: joint stabilisation and proprioceptive input. However, the force transfer mechanisms of these devices and their level of action remain controversial. The objectives of this work are to characterise the mechanical performance of conventional knee braces regarding their anti-drawer effect using a finite element model of a braced lower limb. A design of experiment approach was used to quantify meaningful mechanical parameters related to the efficiency and discomfort tolerance of braces. Results show that the best tradeoff between efficiency and discomfort tolerance is obtained by adjusting the brace length or the strap tightening. Thanks to this computational analysis, novel brace designs can be evaluated for an optimal mechanical efficiency and a better compliance of the patient with the treatment.


Assuntos
Braquetes , Traumatismos do Joelho/prevenção & controle , Traumatismos do Joelho/reabilitação , Articulação do Joelho/fisiopatologia , Adulto , Simulação por Computador , Feminino , Humanos , Joelho , Articulação do Joelho/diagnóstico por imagem , Modelos Lineares , Masculino , Tomografia por Emissão de Pósitrons , Pressão , Projetos de Pesquisa , Estresse Mecânico , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA