Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Chemistry ; 29(31): e202300358, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36974693

RESUMO

Radiosensitive compounds can be useful for the detection of radiations and also as prodrugs that can be activated during a radiotherapy. Herein we describe the use of benzothiazolines, which upon treatment with 137 Cs produced γ-irradiation in water give rise to fluorescent benzothiazoles and concomitant release of amines or carboxylic acids. In a proof of concept study, we showed that benzothiazolines may be used as new cleavable linkers that can be triggered upon irradiation.


Assuntos
Benzotiazóis , Pró-Fármacos
2.
Langmuir ; 39(12): 4291-4303, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36930733

RESUMO

Microparticles of polyethylene and polypropylene are largely found in aquatic environments because they are the most produced and persistent plastic materials. Once in biological media, they are covered by a layer of molecules, the so-called corona, mostly composed of proteins. A yeast protein extract from Saccharomyces cerevisiae was used as a protein system to observe interactions in complex biological media. Proteins, acting as surfactants and providing hydrophilic surfaces, allow the dispersion of highly hydrophobic particles in water and stabilize them. After 24 h, the microplastic quantity was up to 1 × 1011 particles per liter, whereas without protein, no particles remained in solution. Label-free imaging of the protein corona by synchrotron radiation deep UV fluorescence microscopy (SR-DUV) was performed. In situ images of the protein corona were obtained, and the adsorbed protein quantity, the coverage rate, and the corona heterogeneity were determined. The stability kinetics of the microplastic suspensions were measured by light transmission using a Turbiscan analyzer. Together, the microscopic and kinetics results demonstrate that the protein corona can very efficiently stabilize microplastics in solution provided that the protein corona quality is sufficient. Microplastic stability depends on different parameters such as the particle's intrinsic properties (size, density, hydrophobicity) and the protein corona formation that changes the particle wettability, electrostatic charge, and steric hindrance. By controlling these parameters with proteins, it becomes possible to keep microplastics in and out of solution, paving the way for applications in the field of microplastic pollution control and remediation.


Assuntos
Coroa de Proteína , Poluentes Químicos da Água , Microplásticos/química , Plásticos , Coroa de Proteína/química , Polipropilenos , Água , Poluentes Químicos da Água/química
3.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835069

RESUMO

The adsorption of proteins on surfaces has been studied for a long time, but the relationship between the structural and functional properties of the adsorbed protein and the adsorption mechanism remains unclear. Using hemoglobin adsorbed on silica nanoparticles, we have previously shown that hemoglobin's affinity towards oxygen increases with adsorption. Nevertheless, it was also shown that there were no significant changes in the quaternary and secondary structures. In order to understand the change in activity, we decided in this work to focus on the active sites of hemoglobin, the heme and its iron. After measuring adsorption isotherms of porcine hemoglobin on Ludox silica nanoparticles, we analyzed the structural modifications of adsorbed hemoglobin by X-ray absorption spectroscopy and circular dichroism spectra in the Soret region. It was found that upon adsorption, there were modifications in the heme pocket environment due to changes in the angles of the heme vinyl functions. These alterations can explain the greater affinity observed.


Assuntos
Nanopartículas , Dióxido de Silício , Animais , Suínos , Domínio Catalítico , Dióxido de Silício/química , Hemoglobinas/química , Heme , Dicroísmo Circular , Nanopartículas/química , Adsorção
4.
Langmuir ; 36(28): 8218-8230, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32585107

RESUMO

Protein adsorption on nanoparticles is an important field of study, particularly with regard to nanomedicine and nanotoxicology. Many factors can influence the composition and structure of the layer(s) of adsorbed proteins, the so-called protein corona. However, the role of protein size has not been specifically investigated, although some evidence has indicated its potential important role in corona composition and structure. To assess the role of protein size, we studied the interactions of hemoproteins (spanning a large size range) with monodisperse silica nanoparticles. We combined various techniques-adsorption isotherms, isothermal titration calorimetry, circular dichroism, and transmission electron cryomicroscopy-to address this issue. Overall, the results show that small proteins behaved as typical model proteins, forming homogeneous monolayers on the nanoparticle surface (protein corona). Their adsorption is purely enthalpy-driven, with subtle structural changes. In contrast, large proteins interact with nanoparticles via entropy-driven mechanisms. Their structure is completely preserved during adsorption, and any given protein can directly bind to several nanoparticles, forming bridges in these newly formed protein-nanoparticle assemblies. Protein size is clearly an overlooked factor that should be integrated into proteomics and toxicological studies.


Assuntos
Nanopartículas , Coroa de Proteína , Adsorção , Proteínas , Dióxido de Silício
5.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630060

RESUMO

The gadolinium-based nanoagent named AGuIX® is a unique radiosensitizer and contrast agent which improves the performance of radiotherapy and medical imaging. Currently tested in clinical trials, AGuIX® is administrated to patients via intravenous injection. The presence of nanoparticles in the blood stream may induce harmful effects due to undesired interactions with blood components. Thus, there is an emerging need to understand the impact of these nanoagents when meeting blood proteins. In this work, the influence of nanoagents on the structure and stability of the most abundant blood protein, human serum albumin, is presented. Synchrotron radiation circular dichroism showed that AGuIX® does not bind to the protein, even at the high ratio of 45 nanoparticles per protein at 3 mg/L. However, it increases the stability of the albumin. Isothermal thermodynamic calorimetry and fluorescence emission spectroscopy demonstrated that the effect is due to preferential hydration processes. Thus, this study confirms that intravenous injection of AGuIX® presents limited risks of perturbing the blood stream. In a wider view, the methodology developed in this work may be applied to rapidly evaluate the impact and risk of other nano-products that could come into contact with the bloodstream.


Assuntos
Meios de Contraste/efeitos adversos , Gadolínio/efeitos adversos , Nanopartículas/efeitos adversos , Albumina Sérica/efeitos dos fármacos , Calorimetria , Dicroísmo Circular , Humanos , Espectrometria de Fluorescência , Testes de Toxicidade
6.
Chemistry ; 25(4): 997-1009, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30426580

RESUMO

Of all divalent metals, mercury (HgII ) has the highest affinity for metallothioneins. HgII is considered to be enclosed in the α and ß domains as tetrahedral α-type Hg4 Cys11-12 and ß-type Hg3 Cys9 clusters similar to CdII and ZnII . However, neither the four-fold coordination of Hg nor the existence of Hg-Hg atomic pairs have ever been demonstrated, and the HgII partitioning among the two protein domains is unknown. Using high energy-resolution XANES spectroscopy, MP2 geometry optimization, and biochemical analysis, evidence for the coexistence of two-coordinate Hg-thiolate complex and four-coordinate Hg-thiolate cluster with a metacinnabar-type (ß-HgS) structure in the α domain of separate metallothionein molecules from blue mussel under in vivo exposure is provided. The findings suggest that the CXXC claw setting of thiolate donors, which only exists in the α domain, acts as a nucleation center for the polynuclear complex and that the five CXC motifs from this domain serve as the cluster-forming motifs. Oligomerization is driven by metallophilic Hg⋅⋅⋅Hg interactions. Our results provide clues as to why Hg has higher affinity for the α than the ß domain. More generally, this work provides a foundation for understanding how metallothioneins mediate mercury detoxification in the cell under in vivo conditions.

7.
Langmuir ; 35(33): 10831-10837, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31333024

RESUMO

Protein adsorption on a surface is generally evaluated in terms of the evolution of the proteins' structures and functions. However, when the surface is that of a nanoparticle, the protein corona formed around it possesses a particular supramolecular structure that gives a "biological identity" to the new object. Little is known about the actual shape of the protein corona. Here, the protein corona formed by the adsorption of model proteins (myoglobin and hemoglobin) on silica nanoparticles was studied. Small-angle neutron scattering and oxygenation studies were combined to assess both the structural and functional impacts of the adsorption on proteins. Large differences in the oxygenation properties could be found while no significant global shape changes were seen after adsorption. Moreover, the structural study showed that the adsorbed proteins form an organized yet discontinuous monolayer around the nanoparticles.


Assuntos
Hemoglobinas/química , Mioglobina/química , Nanopartículas/química , Coroa de Proteína/química , Dióxido de Silício/química , Animais , Cavalos
8.
Langmuir ; 34(18): 5312-5322, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29648834

RESUMO

Understanding the mechanisms involved in the interaction of proteins with inorganic surfaces is of major interest for both basic research and practical applications involving nanotechnology. From the list of cellular proteins with the highest affinity for silica nanoparticles, we highlighted the group of proteins containing arginine-glycine-glycine (RGG) motifs. Biochemical experiments confirmed that RGG motifs interact strongly with the silica surfaces. The affinity of these motifs is further increased when the R residue is asymmetrically, but not symmetrically, dimethylated. Molecular dynamics simulations show that the asymmetrical dimethylation generates an electrostatic asymmetry in the guanidinium group of the R residue, orientating and stabilizing it on the silica surface. The RGG motifs (methylated or not) systematically target the siloxide groups on the silica surface through an ionic interaction, immediately strengthened by hydrogen bonds with proximal silanol and siloxane groups. Given that, in vivo, RGG motifs are often asymmetrically dimethylated by specific cellular methylases, our data add support to the idea that this type of methylation is a key mechanism for cells to regulate the interaction of the RGG proteins with their cellular partners.


Assuntos
Arginina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/química , Dióxido de Silício/química , Sequência de Aminoácidos , Metilação , Simulação de Dinâmica Molecular , Dióxido de Silício/metabolismo , Propriedades de Superfície
9.
Langmuir ; 33(13): 3241-3252, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28263607

RESUMO

The connection between the mechanisms of protein adsorption on nanoparticles and the structural and functional properties of the adsorbed protein often remains unclear. We investigate porcine hemoglobin adsorption on silica nanoparticles, and we analyze the structural and functional modifications of adsorbed hemoglobin by UV-vis spectrophotometry, circular dichroism, and oxygen binding measurement. The structural analysis of adsorbed hemoglobin on silica nanoparticles reveals a significant loss of secondary structure and a preservation of the heme electronic structure. However, adsorbed hemoglobin retains its quaternary structure and exhibits an enhanced oxygen affinity with cooperative binding. Moreover, the structural and functional modifications are fully reversible after complete desorption from silica nanoparticles at pH 8.7. The tunable adsorption and desorption of hemoglobin on SNPs with pH change, and the full control of hemoglobin activity by pH, temperature, and the addition of inorganic phosphate effectors opens the way to an interesting system whereby protein adsorption on nanoparticles can allow for full control over hemoglobin oxygen binding activity. Our results suggest that adsorption of hemoglobin on silica nanoparticles leads to a new structural, functional, and dynamic state with full reversibility in a way that significantly differs from protein denaturation.


Assuntos
Hemoglobinas/química , Nanopartículas/química , Oxigênio/química , Dióxido de Silício/química , Adsorção , Sítios de Ligação , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular
10.
Langmuir ; 32(1): 195-202, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26649773

RESUMO

We investigated the relationship between unfolded proteins, silica nanoparticles and chaperonin to determine whether unfolded proteins could stick to silica surfaces and how this process could impair heat shock protein activity. The HSP60 catalyzed green fluorescent protein (GFP) folding was used as a model system. The adsorption isotherms and adsorption kinetics of denatured GFP were measured, showing that denaturation increases GFP affinity for silica surfaces. This affinity is maintained even if the surfaces are covered by a protein corona and allows silica NPs to interfere directly with GFP folding by trapping it in its unstructured state. We determined also the adsorption isotherms of HSP60 and its chaperonin activity once adsorbed, showing that SiO2 NP can interfere also indirectly with protein folding through chaperonin trapping and inhibition. This inhibition is specifically efficient when NPs are covered first with a layer of unfolded proteins. These results highlight for the first time the antichaperonin activity of silica NPs and ask new questions about the toxicity of such misfolded proteins/nanoparticles assembly toward cells.


Assuntos
Proteínas de Fluorescência Verde/química , Nanopartículas/química , Dióxido de Silício/química , Dobramento de Proteína
11.
Anal Bioanal Chem ; 406(30): 8037-40, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25245420

RESUMO

Oxidative footprinting has been used to study the structure of macromolecular assemblies such as protein-protein and protein-ligand complexes. We propose a novel development of this technique to probe the protein corona that forms at the surface of nanoparticles in any biological medium. Indeed, very few techniques allow studying this interface at the molecular and residue level. Based on hydroxyl radical-mediated oxidation of proteins and analysis by nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS), two sites of adsorption of myoglobin on silica nanoparticles are identified. This method gives new insights in the understanding of protein adsorption on nanomaterials.


Assuntos
Mioglobina/química , Nanopartículas/química , Dióxido de Silício/química , Adsorção , Animais , Cromatografia Líquida/métodos , Cavalos , Modelos Moleculares , Mioglobina/isolamento & purificação , Oxirredução , Espectrometria de Massas em Tandem/métodos
12.
J Pharm Sci ; 113(6): 1645-1652, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38336007

RESUMO

Noble metal materials, especially platinum nanoparticles (Pt NPs), have immense potential in nanomedicine as therapeutic agents on account of their high electron density and their high surface area. Intravenous injection is proposed as the best mode to deliver the product to patients. However, our understanding of the reaction of nanoparticles with blood components, especially proteins, is far behind the explosive development of these agents. Using synchrotron radiation circular dichroism (SRCD), we investigated the structural and stability changes of human serum albumin (HSA) upon interaction with PEG-OH coated Pt NPs at nanomolar concentrations, conditions potentially encountered for intravenous injection. There is no strong complexation found between HSA and Pt NPs. However, for the highest molar ratio of NP:HSA of 1:1, an increase of 18 °C in the thermal unfolding of HSA was observed, which is attributed to increased thermal stability of HSA generated by preferential hydration. This work proposes a new and fast method to probe the potential toxicity of nanoparticles intended for clinical use with intravenous injection.


Assuntos
Dicroísmo Circular , Nanopartículas Metálicas , Platina , Albumina Sérica , Humanos , Platina/química , Nanopartículas Metálicas/química , Albumina Sérica/química , Polietilenoglicóis/química
13.
Langmuir ; 29(44): 13465-72, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24083553

RESUMO

If protein structure and function changes upon adsorption are well documented, modification of adsorbed protein dynamics remains a blind spot, despite its importance in biological processes. The adsorption of metmyoglobin on a silica surface was studied by isotherm measurements, microcalorimetry, circular dichroïsm, and UV-visible spectroscopy to determine the thermodynamic parameters of protein adsorption and consequent structure modifications. The mean square displacement and the vibrational densities of states of the adsorbed protein were measured by elastic and inelastic neutron scattering experiments. A decrease of protein flexibility and depletion in low frequency modes of myoglobin after adsorption on silica was observed. Our results suggest that the structure loss itself is not the entropic driving force of adsorption.


Assuntos
Metamioglobina/química , Metamioglobina/metabolismo , Dióxido de Silício/química , Adsorção , Animais , Nanopartículas/química , Propriedades de Superfície , Termodinâmica
14.
Sci Rep ; 13(1): 1227, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681766

RESUMO

Protein aggregation in biotherapeutics can reduce their activity and effectiveness. It may also promote immune reactions responsible for severe adverse effects. The impact of plastic materials on protein destabilization is not totally understood. Here, we propose to deconvolve the effects of material surface, air/liquid interface, and agitation to decipher their respective role in protein destabilization and aggregation. We analyzed the effect of polypropylene, TEFLON, glass and LOBIND surfaces on the stability of purified proteins (bovine serum albumin, hemoglobin and α-synuclein) and on a cell extract composed of 6000 soluble proteins during agitation (P = 0.1-1.2 W/kg). Proteomic analysis revealed that chaperonins, intrinsically disordered proteins and ribosomes were more sensitive to the combined effects of material surfaces and agitation while small metabolic oligomers could be protected in the same conditions. Protein loss observations coupled to Raman microscopy, dynamic light scattering and proteomic allowed us to propose a mechanistic model of protein destabilization by plastics. Our results suggest that protein loss is not primarily due to the nucleation of small aggregates in solution, but to the destabilization of proteins exposed to material surfaces and their subsequent aggregation at the sheared air/liquid interface, an effect that cannot be prevented by using LOBIND tubes. A guidance can be established on how to minimize these adverse effects. Remove one of the components of this combined stress - material, air (even partially), or agitation - and proteins will be preserved.


Assuntos
Plásticos , Proteoma , Agregados Proteicos , Proteômica , Soroalbumina Bovina
15.
Front Plant Sci ; 13: 1055912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531371

RESUMO

The research on strategies to reduce cadmium (Cd) accumulation in cacao beans is currently limited by a lack of understanding of the Cd transfer pathways within the cacao tree. Here, we elucidated the transfer of Cd from soil to the nib (seed) in a high Cd accumulating cacao cultivar. Here, we elucidated the transfer of Cd from soil to the nib (seed) in a high Cd accumulating cacao cultivar through Cd stable isotope fractionation, speciation (X-Ray Absorption Spectroscopy), and localization (Laser Ablation Inductively Coupled Plasma Mass Spectrometry). The plant Cd concentrations were 10-28 higher than the topsoil Cd concentrations and increased as placenta< nib< testa< pod husk< root< leaf< branch. The retention of Cd in the roots was low. Light Cd isotopes were retained in the roots whilst heavier Cd isotopes were transported to the shoots (Δ 114/110 Cd shoot-root = 0.27 ± 0.02 ‰ (weighted average ± standard deviation)). Leaf Cd isotopes were heavier than Cd in the branches (Δ 114/110 Cd IF3 leaves-branch = 0.18 ± 0.01 ‰), confirming typical trends observed in annual crops. Nibs and branches were statistically not distinguishable (Δ 114/110 Cd nib-branch = -0.08‰ ± 0.06 ‰), contrary to the leaves and nibs (Δ 114/110 Cd nib-IF3 leaves = -0.25‰ ± 0.05 ‰). These isotope fractionation patterns alluded to a more direct transfer from branches to nibs rather than from leaves to nibs. The largest fraction (57%) of total plant Cd was present in the branches where it was primarily bound to carboxyl-ligands (60-100%) and mainly localized in the phloem rays and phelloderm of the bark. Cadmium in the nibs was mainly bound to oxygen ligands (60-90%), with phytate as the most plausible ligand. The weight of evidence suggested that Cd was transferred like other nutrients from root to shoot and accumulated in the phloem rays and phelloderm of the branches to reduce the transfer to foliage. Finally, the data indicated that the main contribution of nib Cd was from the phloem tissues of the branch rather than from leaf remobilization. This study extended the limited knowledge on Cd accumulation in perennial, woody crops and revealed that the Cd pathways in cacao are markedly different than in annual crops.

16.
Langmuir ; 27(8): 4358-61, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21417243

RESUMO

A polymerizable amphiphile polymer containing PEG was synthesized and used to encapsulate quantum dots in micelles. The quantum dot micelles were then polymerized using a "clean" electron beam process that did not require any post-irradiation purification. Fluorescence spectroscopy revealed that the polymerized micelles provided an organic coating that preserved the quantum dot fluorescence better than nonpolymerized micelles, even under harsh conditions.


Assuntos
Micelas , Polimerização , Pontos Quânticos , Elétrons , Polímeros/química
17.
Biochemistry ; 49(20): 4297-9, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20415454

RESUMO

A new footprinting method for mapping protein interactions has been developed, using tritium as a radioactive label. As residues involved in an interaction are less labeled when the complex is formed, they can be identified via comparison of the tritium incorporation of each residue of the bound protein with that of the unbound one. Application of this footprinting method to the complex formed by the histone H3 fragment H3(122-135) and the protein hAsf1A(1-156) afforded data in good agreement with NMR results.


Assuntos
Marcação por Isótopo/métodos , Pegadas de Proteínas/métodos , Proteínas/metabolismo , Sequência de Aminoácidos , Eficiência , Histonas/química , Histonas/metabolismo , Humanos , Modelos Biológicos , Ressonância Magnética Nuclear Biomolecular , Nucleossomos/química , Nucleossomos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Sensibilidade e Especificidade , Trítio
18.
Bioorg Med Chem ; 18(22): 7931-9, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20965736

RESUMO

The synthesis of three types of pulvinic acid analogues, using a diversity-oriented strategy starting from a single compound, dimethyl l-tartrate, is described. Lacey-Dieckmann condensation, alcohol dehydration and Suzuki-Miyaura cross-couplings were employed in the course of the analogues syntheses. The evaluation of the antioxidant properties of the 28 synthesized analogues was carried out using antioxidant capacity assays (protection of thymidine and ß-carotene) and free radical scavenging assays (DPPH radical and ABTS radical cation). This allowed to assess the relative influence of the groups bonded to the tetronic ring and to the exocyclic double bond on the activity, as well as the importance of this exocyclic double bond. It was shown that the presence of an electron-donating group on the 3-position of the tetronic ring had a beneficial effect. It was shown in several assays that the presence of the exocyclic bond was not crucial to the activity.


Assuntos
Ácidos Carboxílicos/química , Sequestradores de Radicais Livres/química , Lactonas/química , Benzotiazóis/química , Compostos de Bifenilo/química , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/farmacologia , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/farmacologia , Lactonas/síntese química , Lactonas/farmacologia , Picratos/química , Ácidos Sulfônicos/química , Tartaratos/química , Timidina/química , beta Caroteno/química , beta Caroteno/metabolismo
19.
Nanomaterials (Basel) ; 10(2)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013169

RESUMO

Biomolecules, and particularly proteins, bind on nanoparticle (NP) surfaces to form the so-called protein corona. It is accepted that the corona drives the biological distribution and toxicity of NPs. Here, the corona composition and structure were studied using silica nanoparticles (SiNPs) of different sizes interacting with soluble yeast protein extracts. Adsorption isotherms showed that the amount of adsorbed proteins varied greatly upon NP size with large NPs having more adsorbed proteins per surface unit. The protein corona composition was studied using a large-scale label-free proteomic approach, combined with statistical and regression analyses. Most of the proteins adsorbed on the NPs were the same, regardless of the size of the NPs. To go beyond, the protein physicochemical parameters relevant for the adsorption were studied: electrostatic interactions and disordered regions are the main driving forces for the adsorption on SiNPs but polypeptide sequence length seems to be an important factor as well. This article demonstrates that curvature effects exhibited using model proteins are not determining factors for the corona composition on SiNPs, when dealing with complex biological media.

20.
ACS Nano ; 14(7): 9073-9088, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32633939

RESUMO

Few experimental techniques allow the analysis of the protein corona in situ. As a result, little is known on the effects of nanoparticles on weakly bound proteins that form the soft corona. Despite its biological importance, our understanding of the molecular bases driving its formation is limited. Here, we show that hemoglobin can form either a hard or a soft corona on silica nanoparticles depending on the pH conditions. Using cryoTEM and synchrotron-radiation circular dichroism, we show that nanoparticles alter the structure and the stability of weakly bound proteins in situ. Molecular dynamics simulation identified the structural elements driving protein-nanoparticle interaction. Based on thermodynamic analysis, we show that nanoparticles stabilize partially unfolded protein conformations by enthalpy-driven molecular interactions. We suggest that nanoparticles alter weakly bound proteins by shifting the equilibrium toward the unfolded states at physiological temperature. We show that the classical approach based on nanoparticle separation from the biological medium fails to detect destabilization of weakly bound proteins, and therefore cannot be used to fully predict the biological effects of nanomaterials in situ.


Assuntos
Nanopartículas , Coroa de Proteína , Conformação Proteica , Proteínas , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA