Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(5): e17304, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711381

RESUMO

Subtropical forests, recognized for their intricate vertical canopy stratification, exhibit high resistance to extreme drought. However, the response of leaf phenology to drought in the species-rich understory remains poorly understood. In this study, we constructed a digital camera system, amassing over 360,000 images through a 70% throughfall exclusion experiment, to explore the drought response of understory leaf phenology. The results revealed a significant advancement in understory leaf senescence phenology under drought, with 11.75 and 15.76 days for the start and end of the leaf-falling event, respectively. Pre-season temperature primarily regulated leaf development phenology, whereas soil water dominated the variability in leaf senescence phenology. Under drought conditions, temperature sensitivities for the end of leaf emergence decreased from -13.72 to -11.06 days °C-1, with insignificance observed for the start of leaf emergence. Consequently, drought treatment shortened both the length of the growing season (15.69 days) and the peak growth season (9.80 days) for understory plants. Moreover, this study identified diverse responses among intraspecies and interspecies to drought, particularly during the leaf development phase. These findings underscore the pivotal role of water availability in shaping understory phenology patterns, especially in subtropical forests.


Assuntos
Secas , Folhas de Planta , Estações do Ano , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Temperatura , Florestas , Água/metabolismo , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Solo , Clima Tropical , China
2.
Glob Chang Biol ; 28(10): 3310-3320, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35234326

RESUMO

Earth system models are implementing soil phosphorus dynamic and plant functional traits to predict functional changes in global forests. However, the linkage between soil phosphorus and plant traits lacks empirical evidence, especially in mature forests. Here, we examined the soil phosphorus constraint on plant functional traits in a mature subtropical forest based on observations of 9943 individuals from 90 species in a 5-ha forest dynamic plot and 405 individuals from 15 species in an adjacent 10-year nutrient-addition experiment. We first confirmed a pervasive phosphorus limitation on subtropical tree growth based on leaf N:P ratios. Then, we found that soil phosphorus dominated multidimensional trait variations in the 5-ha forest dynamic plot. Soil phosphorus content explained 44% and 53% of the variance in the traits defining the main functional space across species and communities, respectively. Lastly, we found much stronger phosphorus effects on most plant functional traits than nitrogen at both species and community levels in the 10-year nutrient-addition experiment. This study provides evidence for the consistent pattern of soil phosphorus constraint on plant trait variations between the species and community levels in a mature evergreen broadleaf forest in the East Asian monsoon region. These findings shed light on the predominant role of soil phosphorus on plant functional trait variations in mature subtropical forests, providing new insights for models to incorporate soil phosphorus constraint in predicting future vegetation dynamics.


Assuntos
Fósforo , Solo , China , Florestas , Humanos , Nitrogênio/análise , Folhas de Planta/química , Árvores
3.
Sci Adv ; 9(43): eadi6395, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37878695

RESUMO

Because of global warming, Earth's ecosystems have been experiencing more frequent and severe heatwaves. Heatwaves are expected to tip terrestrial carbon sequestration by elevating ecosystem respiration and suppressing gross primary productivity (GPP). Here, using the convergent cross-mapping technique, this study detected positive bidirectional causal effects between GPP and respiration in two unprecedented European heatwaves. Heatwaves enhanced the causal effect strength of GPP on respiration rather than respiration on GPP across 40 site-years of observations. Further analyses and global simulations revealed spatial heterogeneity in the heatwave response of the causal link strength between GPP and respiration, which was jointly driven by the local climate and vegetation properties. However, the causal effect strength of GPP on respiration showed considerable uncertainties in CMIP6 models. This study reveals an enhanced causal link strength between GPP and respiration during heatwaves, shedding light on improving projections for terrestrial carbon sink dynamics under future climate extremes.


Assuntos
Ecossistema , Fotossíntese , Ciclo do Carbono , Sequestro de Carbono , Clima , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA