RESUMO
Microplastics (MPs) and nanoplastics (NPs) from mulch films and other plastic materials employed in vegetable and small fruit production pose a major threat to agricultural ecosystems. For conducting controlled studies on MPs' and NPs' (MNPs') ecotoxicity to soil organisms and plants and fate and transport in soil, surrogate MNPs are required that mimic MNPs that form in agricultural fields. We have developed a procedure to prepare MPs from plastic films or pellets using mechanical milling and sieving, and conversion of the resultant MPs into NPs through wet grinding, both steps of which mimic the degradation and fragmentation of plastics in nature. The major goal of this study was to determine if cryogenic exposure of two biodegradable mulch films effectively mimics the embrittlement caused by environmental weathering in terms of the dimensional, thermal, chemical, and biodegradability properties of the formed MNPs. We found differences in size, surface charge, thermal and chemical properties, and biodegradability in soil between MNPs prepared from cryogenically treated vs. environmentally weathered films, related to the photochemical reactions occurring in the environment that were not mimicked by cryogenic treatment, such as depolymerization and cross-link formation. We also investigated the size reduction process for NPs and found that the size distribution was bimodal, with populations centered at 50 nm and 150-300 nm, and as the size reduction process progressed, the former subpopulation's proportion increased. The biodegradability of MPs in soil was greater than for NPs, a counter-intuitive trend since greater surface area exposure for NPs would increase biodegradability. The result isassociated with differences in surface and chemical properties and to minor components that are readily leached out during the formation of NPs. In summary, the use of weathered plastics as feedstock would likely produce MNPs that are more realistic than cryogenically-treated unweathered films for use in experimental studies.
RESUMO
Release of microplastics (MPs) and nanoplastics (NPs) into agricultural fields is of great concern due to their reported ecotoxicity to organisms that provide beneficial service to the soil such as earthworms, and the potential ability of MPs and NPs to enter the food chain. Most fundamental studies of the fate and transport of plastic particulates in terrestrial environments employ idealized MP materials as models, such as monodisperse polystyrene spheres. In contrast, plastics that reside in agricultural soils consist of polydisperse fragments resulting from degraded films employed in agriculture. There exists a need for more representative materials in fundamental studies of the fate, transport, and ecotoxicity of MPs and NPs in soil ecosystems. The objective of this study was therefore to develop a procedure to produce MPs and NPs from agricultural plastics (a mulch film prepared biodegradable polymer polybutyrate adipate-co-terephthalate (PBAT) and low-density PE [LDPE]), and to characterize the resultant materials. Soaking of PBAT films under cryogenic conditions promoted embrittlement, similar to what occurs through environmental weathering. LDPE and cryogenically-treated PBAT underwent mechanical milling followed by sieve fractionation into MP fractions of 840⯵m, 250⯵m, 106⯵m, and 45⯵m. The 106⯵m fraction was subjected to wet grinding to produce NPs of average particle size 366.0â¯nm and 389.4â¯nm for PBAT and LDPE, respectively. A two-parameter Weibull model described the MPs' particle size distributions, while NPs possessed bimodal distributions. Size reduction did not produce any changes in the chemical properties of the plastics, except for slight depolymerization and an increase of crystallinity resulting from cryogenic treatment. This study suggests that MPs form from cutting and high-impact mechanical degradation as would occur during the tillage into soil, and that NPs form from the MP fragments in regions of relative weakness that possess lower molecular weight polymers and crystallinity.