Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 123(13): 1846-1856, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824390

RESUMO

Reactions that occur within the lipid membrane involve, at minimum, ternary complexes among the enzyme, substrate, and lipid. For many systems, the impact of the lipid in regulating activity or oligomerization state is poorly understood. Here, we used small-angle neutron scattering (SANS) to structurally characterize an intramembrane aspartyl protease (IAP), a class of membrane-bound enzymes that use membrane-embedded aspartate residues to hydrolyze transmembrane segments of biologically relevant substrates. We focused on an IAP ortholog from the halophilic archaeon Haloferax volcanii (HvoIAP). HvoIAP purified in n-dodecyl-ß-D-maltoside (DDM) fractionates on size-exclusion chromatography (SEC) as two fractions. We show that, in DDM, the smaller SEC fraction is consistent with a compact HvoIAP monomer. Molecular dynamics flexible fitting conducted on an AlphaFold2-generated monomer produces a model in which loops are compact alongside the membrane-embedded helices. In contrast, SANS data collected on the second SEC fraction indicate an oligomer consistent with an elongated assembly of discrete HvoIAP monomers. Analysis of in-line SEC-SANS data of the HvoIAP oligomer, the first such experiment to be conducted on a membrane protein at Oak Ridge National Lab (ORNL), shows a diversity of elongated and spherical species, including one consistent with the tetrameric assembly reported for the Methanoculleus marisnigri JR1 IAP crystal structure not observed previously in solution. Reconstitution of monomeric HvoIAP into bicelles increases enzyme activity and results in the assembly of HvoIAP into a species with similar dimensions as the ensemble of oligomers isolated from DDM. Our study reveals lipid-mediated HvoIAP self-assembly and demonstrates the utility of in-line SEC-SANS in elucidating oligomerization states of small membrane proteins.


Assuntos
Ácido Aspártico Proteases , Haloferax volcanii , Difração de Nêutrons , Multimerização Proteica , Espalhamento a Baixo Ângulo , Ácido Aspártico Proteases/metabolismo , Ácido Aspártico Proteases/química , Haloferax volcanii/enzimologia , Membrana Celular/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Simulação de Dinâmica Molecular , Estrutura Quaternária de Proteína
2.
Biomacromolecules ; 25(6): 3542-3553, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38780531

RESUMO

Lignocellulosic biomass is a highly sustainable and largely carbon dioxide neutral feedstock for the production of biofuels and advanced biomaterials. Although thermochemical pretreatment is typically used to increase the efficiency of cell wall deconstruction, genetic engineering of the major plant cell wall polymers, especially lignin, has shown promise as an alternative approach to reduce biomass recalcitrance. Poplar trees with reduced lignin content and altered composition were previously developed by overexpressing bacterial 3-dehydroshikimate dehydratase (QsuB) enzyme to divert carbon flux from the shikimate pathway. In this work, three transgenic poplar lines with increasing QsuB expression levels and different lignin contents were studied using small-angle neutron scattering (SANS) and wide-angle X-ray scattering (WAXS). SANS showed that although the cellulose microfibril cross-sectional dimension remained unchanged, the ordered organization of the microfibrils progressively decreased with increased QsuB expression. This was correlated with decreasing total lignin content in the QsuB lines. WAXS showed that the crystallite dimensions of cellulose microfibrils transverse to the growth direction were not affected by the QsuB expression, but the crystallite dimensions parallel to the growth direction were decreased by ∼20%. Cellulose crystallinity was also decreased with increased QsuB expression, which could be related to high levels of 3,4-dihydroxybenzoate, the product of QsuB expression, disrupting microfibril crystallization. In addition, the cellulose microfibril orientation angle showed a bimodal distribution at higher QsuB expression levels. Overall, this study provides new structural insights into the impact of ectopic synthesis of small-molecule metabolites on cellulose organization and structure that can be used for future efforts aimed at reducing biomass recalcitrance.


Assuntos
Celulose , Populus , Celulose/química , Populus/genética , Populus/metabolismo , Populus/química , Hidroxibenzoatos/química , Hidroxibenzoatos/metabolismo , Lignina/química , Plantas Geneticamente Modificadas , Hidroliases/metabolismo , Hidroliases/genética , Biomassa , Parede Celular/metabolismo , Parede Celular/química , Resorcinóis
3.
Soft Matter ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651769

RESUMO

Bicontinuous microemulsions (BMEs), self-assembly systems consisting of oil and water nanodomains separated by surfactant monolayers, have many applications. However, changes in structure and properties of BMEs in the vertical direction can affect BMEs' utility. This study's objective was to determine the effect of equilibration time (τeq) on structural changes in the vertical direction for bicontinuous phases of Winsor-III (WIII) systems in situ or after being isolated, for D2O + H2O/1-dodecane/sodium dodecyl sulfate (SDS)/1-pentanol/NaCl at 22 °C. Small-angle neutron scattering (SANS) measurements were performed using a vertical stage sample environment that precisely aligned samples in the neutron beam. SANS data were fitted by the Teubner-Strey (TS) model and changes in TS-derived parameter values were observed. For 10 min ≤ τeq ≤ 4 h, the effective activity of the bicontinuous phase's surfactant monolayers increased with time at all vertical positions. At short equilibration (τeq = 10 min), small but significant amounts of water and oil were transiently emulsified near the WIII upper liquid-liquid interface. WIII systems underwent a relaxation process after being transferred to narrow 1 mm pathlength cells, resulting in a decrease of surfactant activity for the top half of the bicontinuous phase. For isolated bicontinuous phases, results suggest that SDS was desorbed from the BMEs by quartz near the bottom, while near the top, the water concentration near was relatively high. The results suggest that WIII systems should equilibrate for at least 4 hours after being prepared and transferred to a container that differs in cross sectional area and surfactant behavior in BMEs can change near interfaces.

4.
Mol Pharm ; 20(12): 6358-6367, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37961914

RESUMO

Understanding protein dynamics and conformational stability holds great significance in biopharmaceutical research. Hydrogen-deuterium exchange (HDX) is a quantitative methodology used to examine these fundamental properties of proteins. HDX involves measuring the exchange of solvent-accessible hydrogens with deuterium, which yields valuable insights into conformational fluctuations and conformational stability. While mass spectrometry is commonly used to measure HDX on the peptide level, we explore a different approach using small-angle neutron scattering (SANS). In this work, SANS is demonstrated as a complementary and noninvasive HDX method (HDX-SANS). By assessing subtle changes in the tertiary and quaternary structure during the exchange process in deuterated buffer, along with the influence of added electrolytes on protein stability, SANS is validated as a complementary HDX technique. The HDX of a model therapeutic antibody, NISTmAb, an IgG1κ, is monitored by HDX-SANS over many hours using several different formulations, including salts from the Hofmeister series of anions, such as sodium perchlorate, sodium thiocyanate, and sodium sulfate. The impact of these formulation conditions on the thermal stability of NISTmAb is probed by differential scanning calorimetry. The more destabilizing salts led to heightened conformational dynamics in mAb solutions even at temperatures significantly below the denaturation point. HDX-SANS is demonstrated as a sensitive and noninvasive technique for quantifying HDX kinetics directly in mAb solution, providing novel information about mAb conformational fluctuations. Therefore, HDX-SANS holds promise as a potential tool for assessing protein stability in formulation.


Assuntos
Medição da Troca de Deutério , Hidrogênio , Hidrogênio/química , Deutério/química , Espalhamento a Baixo Ângulo , Medição da Troca de Deutério/métodos , Conformação Proteica , Sais
5.
Langmuir ; 39(1): 227-235, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36580910

RESUMO

The amount of water in therapeutic nanoparticles (NPs) is of great importance to the pharmaceutical industry, as water content reflects the volume occupied by the solid components. For example, certain biomolecules, such as mRNA, can undergo conformational change or degradation when exposed to water. Using static light scattering (SLS) and dynamic light scattering (DLS), we estimated the water content of NPs, including extruded liposomes of two different sizes and polystyrene (PS) Latex NPs. In addition, we used small-angle neutron scattering (SANS) to independently access the water content of the samples. The water content of NPs estimated by SLS/DLS was systematically higher than that from SANS. The discrepancy is most likely attributed to the larger radius determined by DLS, in contrast to the SANS-derived radius observed by SANS. However, because of low accessibility to the neutron facilities, we validate the combined SLS/DLS to be a reasonable alternative to SANS for determining the water (or solvent) content of NPs.


Assuntos
Nanopartículas , Água , Espalhamento a Baixo Ângulo , Difração de Nêutrons , Nêutrons
6.
Biomacromolecules ; 24(5): 2164-2172, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36977326

RESUMO

Ionic liquids (ILs) have been widely investigated for the pretreatment and deconstruction of lignocellulosic feedstocks. However, the modes of interaction between IL-anions and cations, and plant cell wall polymers, namely, cellulose, hemicellulose, and lignin, as well as the resulting ultrastructural changes are still unclear. In this study, we investigated the atomic level and suprastructural interactions of microcrystalline cellulose, birchwood xylan, and organosolv lignin with 1,3-dialkylimidazolium ILs having varying sizes of carboxylate anions. Analysis by 13C NMR spectroscopy indicated that cellulose and lignin exhibited stronger hydrogen bonding with acetate ions than with formate ions, as evidenced by greater chemical shift changes. Small-angle X-ray scattering analysis showed that while both cellulose and xylan adopted a single-stranded conformation in acetate-ILs, twice as many acetate ions were bound to one anhydroglucose unit than to an anhydroxylose unit. We also determined that a minimum of seven representative carbohydrate units must interact with an anion for that IL to effectively dissolve cellulose or xylan. Lignin is associated as groups of four polymer molecules in formate-ILs and dispersed as single molecules in acetate-ILs, which indicates that it is highly soluble in the latter. In summary, our study demonstrated that 1,3-dialkylimidazolium acetates displayed stronger binding interactions with cellulose and lignin, as compared to formates, and thus have superior potential to fractionate these polymers from lignocellulosic feedstocks.


Assuntos
Líquidos Iônicos , Lignina , Lignina/química , Líquidos Iônicos/química , Polímeros , Xilanos , Celulose/química , Parede Celular , Ânions/química
7.
Biomacromolecules ; 24(8): 3700-3715, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37478325

RESUMO

While solution micellization of ionic block copolymers (BCP) with randomly distributed ionization sites along the hydrophilic segments has been extensively studied, the roles of positionally controlled ionization sites along the BCP chains in their micellization and resulting micellar structure remain comparatively less understood. Herein, three amphoteric polypeptoid block copolymers carrying two oppositely charged ionizable sites, with one fixed at the hydrophobic terminus and the other varyingly positioned along the hydrophilic segment, have been synthesized by sequential ring-opening polymerization method. The presence of the ionizable site at the hydrophobic segment terminus is expected to promote polymer association toward equilibrium micellar structures in an aqueous solution. The concurrent presence of oppositely charged ionizable sites on the polymer chains allows the polymer association to be electrostatically modulated in a broad pH range (ca. 2-12). Micellization of the amphoteric polypeptoid BCP in dilute aqueous solution and the resulting micellar structure at different solution pHs was investigated by a combination of scattering and microscopic methods. Negative-stain transmission-electron microscopy (TEM), small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS) analyses revealed the dominant presence of core-shell-type spherical micelles and occasional rod-like micelles with liquid crystalline (LC) domains in the micellar core. The micellar structures (e.g., aggregation number, radius of gyration, chain packing in the micelle) were found to be dependent on the solution pH and the position of the ionizable site along the chain. This study has highlighted the potential of controlling the position of ionizable sites along the BCP polymer to modulate the electrostatic and LC interactions, thus tailoring the micellar structure at different solution pH values in water.


Assuntos
Micelas , Polímeros , Espalhamento a Baixo Ângulo , Difração de Raios X , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas
8.
Biomacromolecules ; 24(2): 714-723, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36692364

RESUMO

c-Src kinase is a multidomain non-receptor tyrosine kinase that aberrantly phosphorylates several signaling proteins in cancers. Although the structural properties of the regulatory domains (SH3-SH2) and the catalytic kinase domain have been extensively characterized, there is less knowledge about the N-terminal disordered region (SH4UD) and its interactions with the other c-Src domains. Here, we used domain-selective isotopic labeling combined with the small-angle neutron scattering contrast matching technique to study SH4UD interactions with SH3-SH2. Our results show that in the presence of SH4UD, the radius of gyration (Rg) of SH3-SH2 increases, indicating that it has a more extended conformation. Hamiltonian replica exchange molecular dynamics simulations provide a detailed molecular description of the structural changes in SH4UD-SH3-SH2 and show that the regulatory loops of SH3 undergo significant conformational changes in the presence of SH4UD, while SH2 remains largely unchanged. Overall, this study highlights how a disordered region can drive a folded region of a multidomain protein to become flexible, which may be important for allosteric interactions with binding partners. This may help in the design of therapeutic interventions that target the regulatory domains of this important family of kinases.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas pp60(c-src) , Domínio Catalítico , Domínios Proteicos
9.
Soft Matter ; 19(19): 3487-3495, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37133391

RESUMO

Chain exchange in amphiphilic block polymer micelles is measurable with time-resolved small-angle neutron scattering (TR-SANS) where contrast-matched conditions reveal chain mixing as reduced intensity. However, analyzing chain mixing on short time scales e.g. during micelle transformations remains challenging. SANS model fitting can quantify chain mixing during size and morphology changes, however short acquisition times lead to lower data statistics (higher error). Such data are unsuitable for form factor fitting, especially with polydisperse and/or multimodal scenarios. An integrated-reference approach, R(t), is compatible with such data by using fixed reference patterns for the unmixed and fully mixed states that are each integrated to improve data statistics (lower error). Although the R(t) approach is tolerant of low data statistics, it remains incompatible with size and morphology changes. A new shifting references relaxation approach, SRR(t), is proposed where reference patterns are acquired at each time point to enable mixed state calculations regardless of short acquisition times. The additional experimental measurements needed are described which provide these time-varying reference patterns. The use of reference patterns makes the SRR(t) approach size/morphology-agnostic, allowing for the extent of micelle mixing to be directly calculated without this knowledge. SRR(t) is thus compatible with arbitrary levels of complexity and can provide accurate assessment of the mixed state which could support future model analysis. Calculated scattering datasets were used to demonstrate the SRR(t) approach during multiple size, morphology, and solvent conditions (scenarios 1-3). The mixed state calculated from the SRR(t) approach is shown to be accurate for all three scenarios.

10.
Proc Natl Acad Sci U S A ; 117(29): 16776-16781, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32636260

RESUMO

A particularly promising approach to deconstructing and fractionating lignocellulosic biomass to produce green renewable fuels and high-value chemicals pretreats the biomass with organic solvents in aqueous solution. Here, neutron scattering and molecular-dynamics simulations reveal the temperature-dependent morphological changes in poplar wood biomass during tetrahydrofuran (THF):water pretreatment and provide a mechanism by which the solvent components drive efficient biomass breakdown. Whereas lignin dissociates over a wide temperature range (>25 °C) cellulose disruption occurs only above 150 °C. Neutron scattering with contrast variation provides direct evidence for the formation of THF-rich nanoclusters (Rg ∼ 0.5 nm) on the nonpolar cellulose surfaces and on hydrophobic lignin, and equivalent water-rich nanoclusters on polar cellulose surfaces. The disassembly of the amphiphilic biomass is thus enabled through the local demixing of highly functional cosolvents, THF and water, which preferentially solvate specific biomass surfaces so as to match the local solute polarity. A multiscale description of the efficiency of THF:water pretreatment is provided: matching polarity at the atomic scale prevents lignin aggregation and disrupts cellulose, leading to improvements in deconstruction at the macroscopic scale.


Assuntos
Biotecnologia/métodos , Lignina/química , Madeira/química , Proteínas de Bactérias/metabolismo , Biomassa , Celulase/metabolismo , Furanos/química , Gluconacetobacter xylinus/enzimologia , Hidrólise , Lignina/metabolismo , Populus/química , Solventes/química , Tensoativos/química
11.
J Surfactants Deterg ; 26(3): 387-399, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37470058

RESUMO

The objective of this study is to demonstrate that melittin, a well-studied antimicrobial peptide (AMP), can be solubilized in an active form in bicontinuous microemulsions (BMEs) that employ biocompatible oils. The systems investigated consisted of Winsor-III and -IV BME phases composed of Water/Aerosol-OT (AOT)/Polysorbate 85/isopropyl myristate and a Winsor-IV BME employing Polysorbate 80 and limonene. We found that melittin resided in an α-helix-rich configuration and was in an apolar environment for the AOT/Polysorbate 85 Winsor-III system, suggesting that melittin interacted with the surfactant monolayer and was in an active conformation. An apolar environment was also detected for melittin in the two Winsor-IV systems, but to a lesser extent than the Winsor-III system. Small-angle X-ray scattering analysis indicated that melittin at a concentration of 1.0 g/Laq in the aqueous subphase of the Winsor-IV systems led to the greatest impact on the BME structure (e.g., decrease of quasi-periodic repeat distance and correlation length and induction of interfacial fluidity). The antimicrobial activity of the Polysorbate 80 Winsor-IV system was evaluated against several bacteria prominent in chronic wounds and surgical site infections (SSIs). Melittin-free BMEs inhibited the growth of all tested bacteria due to its oil, limonene, while the inclusion of 1.0 g/Laq of melittin in the BMEs enhanced the activity against several bacteria. A further increase of melittin concentration in the BMEs had no further enhancement. These results demonstrate the potential utility of BMEs as a delivery platform for AMPs and other hydrophilic and lipophilic drugs to inhibit antibiotic-resistant microorganisms in chronic wounds and SSIs.

12.
Proc Natl Acad Sci U S A ; 116(41): 20446-20452, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548393

RESUMO

Intrinsically disordered proteins (IDPs) are abundant in eukaryotic proteomes, play a major role in cell signaling, and are associated with human diseases. To understand IDP function it is critical to determine their configurational ensemble, i.e., the collection of 3-dimensional structures they adopt, and this remains an immense challenge in structural biology. Attempts to determine this ensemble computationally have been hitherto hampered by the necessity of reweighting molecular dynamics (MD) results or biasing simulation in order to match ensemble-averaged experimental observables, operations that reduce the precision of the generated model because different structural ensembles may yield the same experimental observable. Here, by employing enhanced sampling MD we reproduce the experimental small-angle neutron and X-ray scattering profiles and the NMR chemical shifts of the disordered N terminal (SH4UD) of c-Src kinase without reweighting or constraining the simulations. The unbiased simulation results reveal a weakly funneled and rugged free energy landscape of SH4UD, which gives rise to a heterogeneous ensemble of structures that cannot be described by simple polymer theory. SH4UD adopts transient helices, which are found away from known phosphorylation sites and could play a key role in the stabilization of structural regions necessary for phosphorylation. Our findings indicate that adequately sampled molecular simulations can be performed to provide accurate physical models of flexible biosystems, thus rationalizing their biological function.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Humanos , Modelos Químicos , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
13.
Nano Lett ; 21(7): 2883-2890, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33734720

RESUMO

Transparent wood biocomposites based on PMMA combine high optical transmittance with excellent mechanical properties. One hypothesis is that despite poor miscibility the polymer is distributed at the nanoscale inside the cell wall. Small-angle neutron scattering (SANS) experiments are performed to test this hypothesis, using biocomposites based on deuterated PMMA and "contrast-matched" PMMA. The wood cell wall nanostructure soaked in heavy water is quantified in terms of the correlation distance d between the center of elementary cellulose fibrils. For wood/deuterated PMMA, this distance d is very similar as for wood/heavy water (correlation peaks at q ≈ 0.1 Å-1). The peak disappears when contrast-matched PMMA is used, indeed proving nanoscale polymer distribution in the cell wall. The specific processing method used for transparent wood explains the nanocomposite nature of the wood cell wall and can serve as a nanotechnology for cell wall impregnation of polymers in large wood biocomposite structures.


Assuntos
Polimetil Metacrilato , Madeira , Celulose , Polímeros , Espalhamento a Baixo Ângulo
14.
Biophys J ; 120(15): 3152-3165, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34197805

RESUMO

The replication transcription complex (RTC) from the virus SARS-CoV-2 is responsible for recognizing and processing RNA for two principal purposes. The RTC copies viral RNA for propagation into new virus and for ribosomal transcription of viral proteins. To accomplish these activities, the RTC mechanism must also conform to a large number of imperatives, including RNA over DNA base recognition, basepairing, distinguishing viral and host RNA, production of mRNA that conforms to host ribosome conventions, interfacing with error checking machinery, and evading host immune responses. In addition, the RTC will discontinuously transcribe specific sections of viral RNA to amplify certain proteins over others. Central to SARS-CoV-2 viability, the RTC is therefore dynamic and sophisticated. We have conducted a systematic structural investigation of three components that make up the RTC: Nsp7, Nsp8, and Nsp12 (also known as RNA-dependent RNA polymerase). We have solved high-resolution crystal structures of the Nsp7/8 complex, providing insight into the interaction between the proteins. We have used small-angle x-ray and neutron solution scattering (SAXS and SANS) on each component individually as pairs and higher-order complexes and with and without RNA. Using size exclusion chromatography and multiangle light scattering-coupled SAXS, we defined which combination of components forms transient or stable complexes. We used contrast-matching to mask specific complex-forming components to test whether components change conformation upon complexation. Altogether, we find that individual Nsp7, Nsp8, and Nsp12 structures vary based on whether other proteins in their complex are present. Combining our crystal structure, atomic coordinates reported elsewhere, SAXS, SANS, and other biophysical techniques, we provide greater insight into the RTC assembly, mechanism, and potential avenues for disruption of the complex and its functions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Modelos Moleculares , RNA Viral/genética , Espalhamento a Baixo Ângulo , Proteínas não Estruturais Virais , Replicação Viral , Difração de Raios X
15.
J Exp Bot ; 71(10): 2982-2994, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32016356

RESUMO

Auxin-induced cell elongation relies in part on the acidification of the cell wall, a process known as acid growth that presumably triggers expansin-mediated wall loosening via altered interactions between cellulose microfibrils. Cellulose microfibrils are a major determinant for anisotropic growth and they provide the scaffold for cell wall assembly. Little is known about how acid growth depends on cell wall architecture. To explore the relationship between acid growth-mediated cell elongation and plant cell wall architecture, two mutants (jia1-1 and csi1-3) that are defective in cellulose biosynthesis and cellulose microfibril organization were analyzed. The study revealed that cell elongation is dependent on CSI1-mediated cell wall architecture but not on the overall crystalline cellulose content. We observed a correlation between loss of crossed-polylamellate walls and loss of auxin- and fusicoccin-induced cell growth in csi1-3. Furthermore, induced loss of crossed-polylamellate walls via disruption of cortical microtubules mimics the effect of csi1 in acid growth. We hypothesize that CSI1- and microtubule-dependent crossed-polylamellate walls are required for acid growth in Arabidopsis hypocotyls.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Parede Celular , Hipocótilo/crescimento & desenvolvimento , Microtúbulos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte , Glucosiltransferases , Microfibrilas
16.
Biotechnol Bioeng ; 117(10): 2944-2956, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32573768

RESUMO

Chemoenzymatic approaches using carbohydrate-active enzymes (CAZymes) offer a promising avenue for the synthesis of glycans like oligosaccharides. Here, we report a novel chemoenzymatic route for cellodextrins synthesis employed by chimeric CAZymes, akin to native glycosyltransferases, involving the unprecedented participation of a "non-catalytic" lectin-like domain or carbohydrate-binding modules (CBMs) in the catalytic step for glycosidic bond synthesis using ß-cellobiosyl donor sugars as activated substrates. CBMs are often thought to play a passive substrate targeting role in enzymatic glycosylation reactions mostly via overcoming substrate diffusion limitations for tethered catalytic domains (CDs) but are not known to participate directly in any nucleophilic substitution mechanisms that impact the actual glycosyl transfer step. This study provides evidence for the direct participation of CBMs in the catalytic reaction step for ß-glucan glycosidic bonds synthesis enhancing activity for CBM-based CAZyme chimeras by >140-fold over CDs alone. Dynamic intradomain interactions that facilitate this poorly understood reaction mechanism were further revealed by small-angle X-ray scattering structural analysis along with detailed mutagenesis studies to shed light on our current limited understanding of similar transglycosylation-type reaction mechanisms. In summary, our study provides a novel strategy for engineering similar CBM-based CAZyme chimeras for the synthesis of bespoke oligosaccharides using simple activated sugar monomers.


Assuntos
Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Clostridium thermocellum/enzimologia , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Domínio Catalítico , Celulase/química , Cristalografia por Raios X , Glicosilação , Modelos Moleculares , Oligossacarídeos/química , Polissacarídeos/química , Conformação Proteica , Especificidade por Substrato
17.
Langmuir ; 36(32): 9356-9367, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32672981

RESUMO

Sodium chloride (NaCl) is a very common molecule in biotic and abiotic aqueous environments. In both cases, variation of ionic strength is inevitable. In addition to the osmotic variation posed by such perturbations, the question of whether the interactions of monovalent ions Na+ and Cl-, especially with the neutral head groups of phospholipid membranes are impactful enough to change the membrane rigidity, is still not entirely understood. We investigated the dynamics of 1,2-di-(octadecenoyl)-sn-glycero-3-phosphocholine (DOPC) vesicles with zwitterionic neutral head groups in the fluid phase with increasing external salt concentration. At higher salt concentrations, we observe an increase in bending rigidity from neutron spin echo (NSE) spectroscopy and an increase in bilayer thickness from small-angle X-ray scattering (SAXS). We compared different models to distinguish membrane undulations, lipid tail motions, and the translational diffusion of the vesicles. All of the models indicate an increase in bending rigidity by a factor of 1.3-3.6. We demonstrate that even down to t > 10 ns and for Q > 0.07 Å-1, the observed NSE relaxation spectra are influenced by translational diffusion of the vesicles. For t < 5 ns, the lipid tail motion dominates the intermediate dynamic structure factor. As the salt concentration increases, this contribution diminishes. We introduced a time-dependent analysis for the bending rigidity that highlights only a limited Zilman-Granek time window in which the rigidity is physically meaningful.


Assuntos
Bicamadas Lipídicas , Cloreto de Sódio , Fosfatidilcolinas , Espalhamento a Baixo Ângulo , Difração de Raios X
18.
Langmuir ; 35(40): 13020-13030, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31403799

RESUMO

Vesicle-templated nanocapsules are prepared by polymerization of hydrophobic acrylic monomers and cross-linkers in the hydrophobic interior of self-assembled bilayers. Understanding the mechanism of capsule formation and the influence of synthetic parameters on the structural features and functional performance of nanocapsules is critical for the rational design of functional nanodevices, an emerging trend of application of the nanocapsule platform. This study investigated the relationship between basic parameters of the formulation and synthesis of nanocapsules and structural and functional characteristics of the resulting structures. Variations in the monomer/surfactant ratio, temperature of polymerization, and the molar fraction of the free-radical initiators were investigated with a multipronged approach, including shell thickness measurements using small-angle neutron scattering, evaluation of the structural integrity of nanocapsules with scanning electron microscopy, and determination of the retention of entrapped molecules using absorbance and fluorescence spectroscopy. Surprisingly, the thickness of the shells did not correlate with the monomer/surfactant ratio, supporting the hypothesis of substantial stabilization of the surfactant bilayer with loaded monomers. Decreasing the temperature of polymerization had no effect on the spherical structure of nanocapsules but resulted in progressively lower retention of entrapped molecules, suggesting that a spherical skeleton of nanocapsule forms rapidly, followed by filling the gaps to create the structure without pinholes. Lower content of initiators resulted in slower reactions, outlining the baseline conditions for practical synthetic protocols. Taken together, these findings provide insights into the formation of nanocapsules and offer methods for controlling the properties of nanocapsules in viable synthetic methods.

19.
Biomacromolecules ; 20(2): 893-903, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30554514

RESUMO

Model hemicellulose-cellulose composites that mimic plant cell wall polymer interactions were prepared by synthesizing deuterated bacterial cellulose in the presence of glucomannan or xyloglucan. Dilute acid pretreatment (DAP) of these materials was studied using small-angle neutron scattering, X-ray diffraction, and sum frequency generation spectroscopy. The macrofibril dimensions of the pretreated cellulose alone were smaller but with similar entanglement of macrofibrillar network as native cellulose. In addition, the crystallite size dimension along the (010) plane increased. Glucomannan-cellulose underwent similar changes to cellulose, except that the macrofibrillar network was more entangled after DAP. Conversely, in xyloglucan-cellulose the macrofibril dimensions and macrofibrillar network were relatively unchanged after pretreatment, but the cellulose Iß content was increased. Our results point to a tight interaction of xyloglucan with microfibrils while glucomannan only interacts with macrofibril surfaces. This study provides insight into roles of different hemicellulose-cellulose interactions and may help in improving pretreatment processes or engineering plants with decreased recalcitrance.


Assuntos
Celulose/química , Polissacarídeos/química , Parede Celular/química , Glucanos/química , Mananas/química , Plantas/química , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos , Xilanos/química
20.
Biochim Biophys Acta Biomembr ; 1860(2): 624-632, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29138064

RESUMO

Antimicrobial peptides effectively kill antibiotic-resistant bacteria by forming pores in prokaryotes' biomembranes via penetration into the biomembranes' interior. Bicontinuous microemulsions, consisting of interdispersed oil and water nanodomains separated by flexible surfactant monolayers, are potentially valuable for hosting membrane-associated peptides and proteins due to their thermodynamic stability, optical transparency, low viscosity, and high interfacial area. Here, we show that bicontinuous microemulsions formed by negatively-charged surfactants are a robust biomembrane mimetic system for the antimicrobial peptide melittin. When encapsulated in bicontinuous microemulsions formed using three-phase (Winsor-III) systems, melittin's helicity increases greatly due to penetration into the surfactant monolayers, mimicking its behavior in biomembranes. But, the threshold melittin concentration required to achieve these trends is lower for the microemulsions. The extent of penetration was decreased when the interfacial fluidity of the microemulsions was increased. These results suggest the utility of bicontinuous microemulsions for isolation, purification, delivery, and host systems for antimicrobial peptides.


Assuntos
Membrana Celular/química , Emulsões/química , Meliteno/química , Tensoativos/química , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Abelhas/metabolismo , Biomimética , Membrana Celular/efeitos dos fármacos , Dicroísmo Circular , Proteínas de Insetos/química , Proteínas de Insetos/farmacologia , Meliteno/farmacologia , Difração de Nêutrons , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Espectrometria de Fluorescência , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA