Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 172(5): 966-978.e12, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474922

RESUMO

Ebola virus nucleoprotein (eNP) assembles into higher-ordered structures that form the viral nucleocapsid (NC) and serve as the scaffold for viral RNA synthesis. However, molecular insights into the NC assembly process are lacking. Using a hybrid approach, we characterized the NC-like assembly of eNP, identified novel regulatory elements, and described how these elements impact function. We generated a three-dimensional structure of the eNP NC-like assembly at 5.8 Å using electron cryo-microscopy and identified a new regulatory role for eNP helices α22-α23. Biochemical, biophysical, and mutational analyses revealed that inter-eNP contacts within α22-α23 are critical for viral NC assembly and regulate viral RNA synthesis. These observations suggest that the N terminus and α22-α23 of eNP function as context-dependent regulatory modules (CDRMs). Our current study provides a framework for a structural mechanism for NC-like assembly and a new therapeutic target.


Assuntos
Microscopia Crioeletrônica , Ebolavirus/fisiologia , Ebolavirus/ultraestrutura , Nucleocapsídeo/ultraestrutura , Nucleoproteínas/ultraestrutura , Montagem de Vírus , Modelos Biológicos , Proteínas Mutantes/química , Mutação/genética , Nucleoproteínas/química , Multimerização Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Viral/biossíntese , RNA Viral/química , RNA Viral/metabolismo
2.
Nat Methods ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918604

RESUMO

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein-nucleic acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: Escherichia coli beta-galactosidase with inhibitor, SARS-CoV-2 virus RNA-dependent RNA polymerase with covalently bound nucleotide analog and SARS-CoV-2 virus ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. The quality of submitted ligand models and surrounding atoms were analyzed by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics and contact scores. A composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.

3.
Nature ; 596(7873): 603-607, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34381213

RESUMO

Single-particle cryogenic electron microscopy (cryo-EM) has become a standard technique for determining protein structures at atomic resolution1-3. However, cryo-EM studies of protein-free RNA are in their early days. The Tetrahymena thermophila group I self-splicing intron was the first ribozyme to be discovered and has been a prominent model system for the study of RNA catalysis and structure-function relationships4, but its full structure remains unknown. Here we report cryo-EM structures of the full-length Tetrahymena ribozyme in substrate-free and bound states at a resolution of 3.1 Å. Newly resolved peripheral regions form two coaxially stacked helices; these are interconnected by two kissing loop pseudoknots that wrap around the catalytic core and include two previously unforeseen (to our knowledge) tertiary interactions. The global architecture is nearly identical in both states; only the internal guide sequence and guanosine binding site undergo a large conformational change and a localized shift, respectively, upon binding of RNA substrates. These results provide a long-sought structural view of a paradigmatic RNA enzyme and signal a new era for the cryo-EM-based study of structure-function relationships in ribozymes.


Assuntos
Microscopia Crioeletrônica , Conformação de Ácido Nucleico , RNA Catalítico/química , RNA Catalítico/ultraestrutura , Tetrahymena thermophila , Apoenzimas/química , Apoenzimas/ultraestrutura , Holoenzimas/química , Holoenzimas/ultraestrutura , Modelos Moleculares , Tetrahymena thermophila/enzimologia , Tetrahymena thermophila/genética
4.
Mol Cell ; 67(5): 733-743.e4, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28844863

RESUMO

Nuclear receptors recruit multiple coactivators sequentially to activate transcription. This "ordered" recruitment allows different coactivator activities to engage the nuclear receptor complex at different steps of transcription. Estrogen receptor (ER) recruits steroid receptor coactivator-3 (SRC-3) primary coactivator and secondary coactivators, p300/CBP and CARM1. CARM1 recruitment lags behind the binding of SRC-3 and p300 to ER. Combining cryo-electron microscopy (cryo-EM) structure analysis and biochemical approaches, we demonstrate that there is a close crosstalk between early- and late-recruited coactivators. The sequential recruitment of CARM1 not only adds a protein arginine methyltransferase activity to the ER-coactivator complex, it also alters the structural organization of the pre-existing ERE/ERα/SRC-3/p300 complex. It induces a p300 conformational change and significantly increases p300 HAT activity on histone H3K18 residues, which, in turn, promotes CARM1 methylation activity on H3R17 residues to enhance transcriptional activity. This study reveals a structural role for a coactivator sequential recruitment and biochemical process in ER-mediated transcription.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteína p300 Associada a E1A/metabolismo , Receptor alfa de Estrogênio/metabolismo , Guanilato Ciclase/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Transcrição Gênica , Acetilação , Sítios de Ligação , Proteínas Adaptadoras de Sinalização CARD/química , Proteínas Adaptadoras de Sinalização CARD/genética , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína p300 Associada a E1A/química , Proteína p300 Associada a E1A/genética , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/genética , Guanilato Ciclase/química , Guanilato Ciclase/genética , Células HEK293 , Células HeLa , Histonas/química , Histonas/metabolismo , Humanos , Células MCF-7 , Metilação , Modelos Moleculares , Complexos Multiproteicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Coativador 3 de Receptor Nuclear/química , Coativador 3 de Receptor Nuclear/genética , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Fatores de Tempo , Fatores de Transcrição , Ativação Transcricional , Transfecção
5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121661

RESUMO

Tubulin is a conserved protein that polymerizes into different forms of filamentous structures in Toxoplasma gondii, an obligate intracellular parasite in the phylum Apicomplexa. Two key tubulin-containing cytoskeletal components are subpellicular microtubules (SPMTs) and conoid fibrils (CFs). The SPMTs help maintain shape and gliding motility, while the CFs are implicated in invasion. Here, we use cryogenic electron tomography to determine the molecular structures of the SPMTs and CFs in vitrified intact and detergent-extracted parasites. Subvolume densities from detergent-extracted parasites yielded averaged density maps at subnanometer resolutions, and these were related back to their architecture in situ. An intralumenal spiral lines the interior of the 13-protofilament SPMTs, revealing a preferred orientation of these microtubules relative to the parasite's long axis. Each CF is composed of nine tubulin protofilaments that display a comma-shaped cross-section, plus additional associated components. Conoid protrusion, a crucial step in invasion, is associated with an altered pitch of each CF. The use of basic building blocks of protofilaments and different accessory proteins in one organism illustrates the versatility of tubulin to form two distinct types of assemblies, SPMTs and CFs.


Assuntos
Parasitos/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Citoesqueleto/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Organelas/metabolismo
6.
Nat Methods ; 18(2): 156-164, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33542514

RESUMO

This paper describes outcomes of the 2019 Cryo-EM Model Challenge. The goals were to (1) assess the quality of models that can be produced from cryogenic electron microscopy (cryo-EM) maps using current modeling software, (2) evaluate reproducibility of modeling results from different software developers and users and (3) compare performance of current metrics used for model evaluation, particularly Fit-to-Map metrics, with focus on near-atomic resolution. Our findings demonstrate the relatively high accuracy and reproducibility of cryo-EM models derived by 13 participating teams from four benchmark maps, including three forming a resolution series (1.8 to 3.1 Å). The results permit specific recommendations to be made about validating near-atomic cryo-EM structures both in the context of individual experiments and structure data archives such as the Protein Data Bank. We recommend the adoption of multiple scoring parameters to provide full and objective annotation and assessment of the model, reflective of the observed cryo-EM map density.


Assuntos
Microscopia Crioeletrônica/métodos , Modelos Moleculares , Cristalografia por Raios X , Conformação Proteica , Proteínas/química
7.
PLoS Pathog ; 17(1): e1008961, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411789

RESUMO

Varicella-zoster virus (VZV) is a medically important alphaherpesvirus that induces fusion of the virion envelope and the cell membrane during entry, and between cells to form polykaryocytes within infected tissues during pathogenesis. All members of the Herpesviridae, including VZV, have a conserved core fusion complex composed of glycoproteins, gB, gH and gL. The ectodomain of the primary fusogen, gB, has five domains, DI-V, of which DI contains the fusion loops needed for fusion function. We recently demonstrated that DIV is critical for fusion initiation, which was revealed by a 2.8Å structure of a VZV neutralizing mAb, 93k, bound to gB and mutagenesis of the gB-93k interface. To further assess the mechanism of mAb 93k neutralization, the binding site of a non-neutralizing mAb to gB, SG2, was compared to mAb 93k using single particle cryogenic electron microscopy (cryo-EM). The gB-SG2 interface partially overlapped with that of gB-93k but, unlike mAb 93k, mAb SG2 did not interact with the gB N-terminus, suggesting a potential role for the gB N-terminus in membrane fusion. The gB ectodomain structure in the absence of antibody was defined at near atomic resolution by single particle cryo-EM (3.9Å) of native, full-length gB purified from infected cells and by X-ray crystallography (2.4Å) of the transiently expressed ectodomain. Both structures revealed that the VZV gB N-terminus (aa72-114) was flexible based on the absence of visible structures in the cryo-EM or X-ray crystallography data but the presence of gB N-terminal peptides were confirmed by mass spectrometry. Notably, N-terminal residues 109KSQD112 were predicted to form a small α-helix and alanine substitution of these residues abolished cell-cell fusion in a virus-free assay. Importantly, transferring the 109AAAA112 mutation into the VZV genome significantly impaired viral propagation. These data establish a functional role for the gB N-terminus in membrane fusion broadly relevant to the Herpesviridae.


Assuntos
Herpesvirus Humano 3/fisiologia , Melanoma/metabolismo , Fusão de Membrana , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Melanoma/virologia , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Homologia de Sequência , Células Tumorais Cultivadas , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
8.
PLoS Biol ; 18(9): e3000827, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32997652

RESUMO

Matrix proteins are encoded by many enveloped viruses, including influenza viruses, herpes viruses, and coronaviruses. Underneath the viral envelope of influenza virus, matrix protein 1 (M1) forms an oligomeric layer critical for particle stability and pH-dependent RNA genome release. However, high-resolution structures of full-length monomeric M1 and the matrix layer have not been available, impeding antiviral targeting and understanding of the pH-dependent transitions involved in cell entry. Here, purification and extensive mutagenesis revealed protein-protein interfaces required for the formation of multilayered helical M1 oligomers similar to those observed in virions exposed to the low pH of cell entry. However, single-layered helical oligomers with biochemical and ultrastructural similarity to those found in infectious virions before cell entry were observed upon mutation of a single amino acid. The highly ordered structure of the single-layered oligomers and their likeness to the matrix layer of intact virions prompted structural analysis by cryo-electron microscopy (cryo-EM). The resulting 3.4-Å-resolution structure revealed the molecular details of M1 folding and its organization within the single-shelled matrix. The solution of the full-length M1 structure, the identification of critical assembly interfaces, and the development of M1 assembly assays with purified proteins are crucial advances for antiviral targeting of influenza viruses.


Assuntos
Imageamento Tridimensional , Proteínas da Matriz Viral/química , Sequência de Aminoácidos , Reagentes de Ligações Cruzadas/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutação/genética , Multimerização Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Recombinação Genética/genética , Proteínas da Matriz Viral/genética , Vírion/ultraestrutura
9.
Mol Cell ; 57(6): 1047-1058, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25728767

RESUMO

Estrogen receptor (ER/ESR1) is a transcription factor critical for development, reproduction, metabolism, and cancer. ER function hinges on its ability to recruit primary and secondary coactivators, yet structural information on the full-length receptor-coactivator complex to complement preexisting and sometimes controversial biochemical information is lacking. Here, we use cryoelectron microscopy (cryo-EM) to determine the quaternary structure of an active complex of DNA-bound ERα, steroid receptor coactivator 3 (SRC-3/NCOA3), and a secondary coactivator (p300/EP300). Our structural model suggests the following assembly mechanism for the complex: each of the two ligand-bound ERα monomers independently recruits one SRC-3 protein via the transactivation domain of ERα; the two SRC-3s in turn bind to different regions of one p300 protein through multiple contacts. We also present structural evidence for the location of activation function 1 (AF-1) in a full-length nuclear receptor, which supports a role for AF-1 in SRC-3 recruitment.


Assuntos
Proteína p300 Associada a E1A/química , Receptor alfa de Estrogênio/química , Coativador 3 de Receptor Nuclear/química , Sítios de Ligação , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , Proteína p300 Associada a E1A/metabolismo , Receptor alfa de Estrogênio/metabolismo , Histona Acetiltransferases/metabolismo , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Elementos de Resposta
10.
Proc Natl Acad Sci U S A ; 117(13): 7176-7182, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32170016

RESUMO

Prokaryotes and viruses have fought a long battle against each other. Prokaryotes use CRISPR-Cas-mediated adaptive immunity, while conversely, viruses evolve multiple anti-CRISPR (Acr) proteins to defeat these CRISPR-Cas systems. The type I-F CRISPR-Cas system in Pseudomonas aeruginosa requires the crRNA-guided surveillance complex (Csy complex) to recognize the invading DNA. Although some Acr proteins against the Csy complex have been reported, other relevant Acr proteins still need studies to understand their mechanisms. Here, we obtain three structures of previously unresolved Acr proteins (AcrF9, AcrF8, and AcrF6) bound to the Csy complex using electron cryo-microscopy (cryo-EM), with resolution at 2.57 Å, 3.42 Å, and 3.15 Å, respectively. The 2.57-Å structure reveals fine details for each molecular component within the Csy complex as well as the direct and water-mediated interactions between proteins and CRISPR RNA (crRNA). Our structures also show unambiguously how these Acr proteins bind differently to the Csy complex. AcrF9 binds to key DNA-binding sites on the Csy spiral backbone. AcrF6 binds at the junction between Cas7.6f and Cas8f, which is critical for DNA duplex splitting. AcrF8 binds to a distinct position on the Csy spiral backbone and forms interactions with crRNA, which has not been seen in other Acr proteins against the Csy complex. Our structure-guided mutagenesis and biochemistry experiments further support the anti-CRISPR mechanisms of these Acr proteins. Our findings support the convergent consequence of inhibiting degradation of invading DNA by these Acr proteins, albeit with different modes of interactions with the type I-F CRISPR-Cas system.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Interações Hospedeiro-Patógeno , Proteínas Virais/metabolismo , Proteínas Associadas a CRISPR/ultraestrutura , Sistemas CRISPR-Cas , Microscopia Crioeletrônica , Pseudomonas aeruginosa , Proteínas Virais/ultraestrutura
11.
J Biol Chem ; 296: 100560, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33744287

RESUMO

Cryogenic electron microscopy (cryo-EM) methods began to be used in the mid-1970s to study thin and periodic arrays of proteins. Following a half-century of development in cryo-specimen preparation, instrumentation, data collection, data processing, and modeling software, cryo-EM has become a routine method for solving structures from large biological assemblies to small biomolecules at near to true atomic resolution. This review explores the critical roles played by the Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in partnership with the community to develop the necessary infrastructure to archive cryo-EM maps and associated models. Public access to cryo-EM structure data has in turn facilitated better understanding of structure-function relationships and advancement of image processing and modeling tool development. The partnership between the global cryo-EM community and PDB and EMDB leadership has synergistically shaped the standards for metadata, one-stop deposition of maps and models, and validation metrics to assess the quality of cryo-EM structures. The advent of cryo-electron tomography (cryo-ET) for in situ molecular cell structures at a broad resolution range and their correlations with other imaging data introduce new data archival challenges in terms of data size and complexity in the years to come.


Assuntos
Microscopia Crioeletrônica/métodos , Bases de Dados de Proteínas , Proteínas/química , Cristalografia por Raios X , Conformação Proteica , Proteínas/ultraestrutura
12.
J Biol Chem ; 297(4): 101239, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34563541

RESUMO

The Lon AAA+ (adenosine triphosphatases associated with diverse cellular activities) protease (LonA) converts ATP-fuelled conformational changes into sufficient mechanical force to drive translocation of a substrate into a hexameric proteolytic chamber. To understand the structural basis for the substrate translocation process, we determined the cryo-electron microscopy (cryo-EM) structure of Meiothermus taiwanensis LonA (MtaLonA) in a substrate-engaged state at 3.6 Å resolution. Our data indicate that substrate interactions are mediated by the dual pore loops of the ATPase domains, organized in spiral staircase arrangement from four consecutive protomers in different ATP-binding and hydrolysis states. However, a closed AAA+ ring is maintained by two disengaged ADP-bound protomers transiting between the lowest and highest position. This structure reveals a processive rotary translocation mechanism mediated by LonA-specific nucleotide-dependent allosteric coordination among the ATPase domains, which is induced by substrate binding.


Assuntos
Adenosina Trifosfatases/química , Bactérias/enzimologia , Proteínas de Bactérias/química , Protease La/química , Adenosina Trifosfatases/genética , Bactérias/genética , Proteínas de Bactérias/genética , Cristalografia por Raios X , Protease La/genética , Estrutura Secundária de Proteína
13.
Proc Natl Acad Sci U S A ; 116(14): 6800-6805, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30894496

RESUMO

Human gastric pathogen Helicobacter pylori (H. pylori) is the primary risk factor for gastric cancer and is one of the most prevalent carcinogenic infectious agents. Vacuolating cytotoxin A (VacA) is a key virulence factor secreted by H. pylori and induces multiple cellular responses. Although structural and functional studies of VacA have been extensively performed, the high-resolution structure of a full-length VacA protomer and the molecular basis of its oligomerization are still unknown. Here, we use cryoelectron microscopy to resolve 10 structures of VacA assemblies, including monolayer (hexamer and heptamer) and bilayer (dodecamer, tridecamer, and tetradecamer) oligomers. The models of the 88-kDa full-length VacA protomer derived from the near-atomic resolution maps are highly conserved among different oligomers and show a continuous right-handed ß-helix made up of two domains with extensive domain-domain interactions. The specific interactions between adjacent protomers in the same layer stabilizing the oligomers are well resolved. For double-layer oligomers, we found short- and/or long-range hydrophobic interactions between protomers across the two layers. Our structures and other previous observations lead to a mechanistic model wherein VacA hexamer would correspond to the prepore-forming state, and the N-terminal region of VacA responsible for the membrane insertion would undergo a large conformational change to bring the hydrophobic transmembrane region to the center of the oligomer for the membrane channel formation.


Assuntos
Proteínas de Bactérias/ultraestrutura , Toxinas Bacterianas/química , Helicobacter pylori/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Multimerização Proteica , Microscopia Crioeletrônica , Estrutura Quaternária de Proteína
14.
Elife ; 122024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345841

RESUMO

CLC-2 is a voltage-gated chloride channel that contributes to electrical excitability and ion homeostasis in many different tissues. Among the nine mammalian CLC homologs, CLC-2 is uniquely activated by hyperpolarization, rather than depolarization, of the plasma membrane. The molecular basis for the divergence in polarity of voltage gating among closely related homologs has been a long-standing mystery, in part because few CLC channel structures are available. Here, we report cryoEM structures of human CLC-2 at 2.46 - 2.76 Å, in the presence and absence of the selective inhibitor AK-42. AK-42 binds within the extracellular entryway of the Cl--permeation pathway, occupying a pocket previously proposed through computational docking studies. In the apo structure, we observed two distinct conformations involving rotation of one of the cytoplasmic C-terminal domains (CTDs). In the absence of CTD rotation, an intracellular N-terminal 15-residue hairpin peptide nestles against the TM domain to physically occlude the Cl--permeation pathway. This peptide is highly conserved among species variants of CLC-2 but is not present in other CLC homologs. Previous studies suggested that the N-terminal domain of CLC-2 influences channel properties via a "ball-and-chain" gating mechanism, but conflicting data cast doubt on such a mechanism, and thus the structure of the N-terminal domain and its interaction with the channel has been uncertain. Through electrophysiological studies of an N-terminal deletion mutant lacking the 15-residue hairpin peptide, we support a model in which the N-terminal hairpin of CLC-2 stabilizes a closed state of the channel by blocking the cytoplasmic Cl--permeation pathway.


Assuntos
Canais de Cloro CLC-2 , Animais , Humanos , Fenômenos Biofísicos , Canais de Cloro CLC-2/química , Eletrofisiologia , Mamíferos/metabolismo , Peptídeos/metabolismo , Microscopia Crioeletrônica
15.
PNAS Nexus ; 3(3): pgae102, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38525304

RESUMO

Alphaviruses are spherical, enveloped RNA viruses with two-layered icosahedral architecture. The structures of many alphaviruses have been studied using cryogenic electron microscopy (cryo-EM) reconstructions, which impose icosahedral symmetry on the viral particles. Using cryogenic electron tomography (cryo-ET), we revealed a polarized symmetry defect in the icosahedral lattice of Chikungunya virus (CHIKV) in situ, similar to the late budding particles, suggesting the inherent imperfect symmetry originates from the final pinch-off of assembled virions. We further demonstrated this imperfect symmetry is also present in in vitro purified CHIKV and Mayaro virus, another arthritogenic alphavirus. We employed a subparticle-based single-particle analysis protocol to circumvent the icosahedral imperfection and boosted the resolution of the structure of the CHIKV to ∼3 Šresolution, which revealed detailed molecular interactions between glycoprotein E1-E2 heterodimers in the transmembrane region and multiple lipid-like pocket factors located in a highly conserved hydrophobic pocket. This complementary use of in situ cryo-ET and single-particle cryo-EM approaches provides a more precise structural description of near-icosahedral viruses and valuable insights to guide the development of structure-based antiviral therapies against alphaviruses.

16.
mBio ; 15(4): e0286423, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38456679

RESUMO

Intracellular infectious agents, like the malaria parasite, Plasmodium falciparum, face the daunting challenge of how to invade a host cell. This problem may be even harder when the host cell in question is the enucleated red blood cell, which lacks the host machinery co-opted by many pathogens for internalization. Evolution has provided P. falciparum and related single-celled parasites within the phylum Apicomplexa with a collection of organelles at their apical end that mediate invasion. This apical complex includes at least two sets of secretory organelles, micronemes and rhoptries, and several structural features like apical rings and a putative pore through which proteins may be introduced into the host cell during invasion. We perform cryogenic electron tomography (cryo-ET) equipped with Volta Phase Plate on isolated and vitrified merozoites to visualize the apical machinery. Through tomographic reconstruction of cellular compartments, we see new details of known structures like the rhoptry tip interacting directly with a rosette resembling the recently described rhoptry secretory apparatus (RSA), or with an apical vesicle docked beneath the RSA. Subtomogram averaging reveals that the apical rings have a fixed number of repeating units, each of which is similar in overall size and shape to the units in the apical rings of tachyzoites of Toxoplasma gondii. Comparison of these polar rings in Plasmodium and Toxoplasma parasites also reveals them to have a structurally conserved assembly pattern. These results provide new insight into the essential and structurally conserved features of this remarkable machinery used by apicomplexan parasites to invade their respective host cells. IMPORTANCE: Malaria is an infectious disease caused by parasites of the genus Plasmodium and is a leading cause of morbidity and mortality globally. Upon infection, Plasmodium parasites invade and replicate in red blood cells, where they are largely protected from the immune system. To enter host cells, the parasites employ a specialized apparatus at their anterior end. In this study, advanced imaging techniques like cryogenic electron tomography (cryo-ET) and Volta Phase Plate enable unprecedented visualization of whole Plasmodium falciparum merozoites, revealing previously unknown structural details of their invasion machinery. Key findings include new insights into the structural conservation of apical rings shared between Plasmodium and its apicomplexan cousin, Toxoplasma. These discoveries shed light on the essential and conserved elements of the invasion machinery used by these pathogens. Moreover, the research provides a foundation for understanding the molecular mechanisms underlying parasite-host interactions, potentially informing strategies for combating diseases caused by apicomplexan parasites.


Assuntos
Malária , Parasitos , Plasmodium , Toxoplasma , Animais , Plasmodium falciparum/metabolismo , Tomografia com Microscopia Eletrônica , Proteínas de Protozoários/metabolismo , Parasitos/metabolismo , Interações Hospedeiro-Parasita , Toxoplasma/metabolismo
17.
ArXiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38076521

RESUMO

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and consensus recommendations resulting from the workshop. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.

18.
IUCrJ ; 11(Pt 2): 140-151, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358351

RESUMO

In January 2020, a workshop was held at EMBL-EBI (Hinxton, UK) to discuss data requirements for the deposition and validation of cryoEM structures, with a focus on single-particle analysis. The meeting was attended by 47 experts in data processing, model building and refinement, validation, and archiving of such structures. This report describes the workshop's motivation and history, the topics discussed, and the resulting consensus recommendations. Some challenges for future methods-development efforts in this area are also highlighted, as is the implementation to date of some of the recommendations.


Assuntos
Curadoria de Dados , Microscopia Crioeletrônica/métodos
19.
Res Sq ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38343795

RESUMO

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein/nucleic-acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: E. coli beta-galactosidase with inhibitor, SARS-CoV-2 RNA-dependent RNA polymerase with covalently bound nucleotide analog, and SARS-CoV-2 ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. We found that (1) the quality of submitted ligand models and surrounding atoms varied, as judged by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics, and contact scores, and (2) a composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.

20.
STAR Protoc ; 3(1): 101030, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-34977676

RESUMO

This protocol describes the reconstitution of the filamentous Ebola virus nucleocapsid-like assembly in vitro. This is followed by solving the cryo-EM structure using helical reconstruction, and flexible fitting of the existing model into the 5.8 Å cryo-EM map. The protocol can be applied to other filamentous viral protein assemblies, particularly those with high flexibility and moderate resolution maps, which present technical challenges to model building. For complete details on the use and execution of this profile, please refer to Su et al. (2018).


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Microscopia Crioeletrônica/métodos , Ebolavirus/química , Humanos , Nucleocapsídeo/química , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA