Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Dev Biol ; 507: 20-33, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154769

RESUMO

The neural tube, the embryonic precursor to the brain and spinal cord, begins as a flat sheet of epithelial cells, divided into non-neural and neural ectoderm. Proper neural tube closure requires that the edges of the neural ectoderm, the neural folds, to elevate upwards and fuse along the dorsal midline of the embryo. We have previously shown that members of the claudin protein family are required for the early phases of chick neural tube closure. Claudins are transmembrane proteins, localized in apical tight junctions within epithelial cells where they are essential for regulation of paracellular permeability, strongly involved in apical-basal polarity, cell-cell adhesion, and bridging the tight junction to cytoplasmic proteins. Here we explored the role of Claudin-3 (Cldn3), which is specifically expressed in the non-neural ectoderm. We discovered that depletion of Cldn3 causes folic acid-insensitive primarily spinal neural tube defects due to a failure in neural fold fusion. Apical cell surface morphology of Cldn3-depleted non-neural ectodermal cells exhibited increased membrane blebbing and smaller apical surfaces. Although apical-basal polarity was retained, we observed altered Par3 and Pals1 protein localization patterns within the apical domain of the non-neural ectodermal cells in Cldn3-depleted embryos. Furthermore, F-actin signal was reduced at apical junctions. Our data presents a model of spina bifida, and the role that Cldn3 is playing in regulating essential apical cell processes in the non-neural ectoderm required for neural fold fusion.


Assuntos
Ectoderma , Crista Neural , Embrião de Galinha , Animais , Ectoderma/metabolismo , Crista Neural/metabolismo , Galinhas/metabolismo , Claudina-3/metabolismo , Tubo Neural , Claudinas/genética , Claudinas/metabolismo , Junções Íntimas/metabolismo
2.
J Biol Chem ; : 107693, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159821

RESUMO

Tight junctions play a pivotal role in the functional integrity of the human body by forming barriers that compartmentalize tissues and protect the body from external threats. Essential components of tight junctions are the transmembrane claudin proteins, which can polymerize into tight junction strands and meshworks. This study delves into the structural determinants of claudin polymerization, utilizing the close homology yet strong difference in polymerization capacity between claudin-3 and claudin-4. Through a combination of sequence alignment and structural modeling, critical residues in the second extracellular segment are pinpointed. Molecular dynamics simulations provide insights into the interactions of and the conformational changes induced by the identified extracellular segment 2 residues. Live-STED imaging demonstrates that introduction of these residues from claudin-3 into claudin-4 significantly enhances polymerization in non-epithelial cells. In tight junction-deficient epithelial cells, mutated claudin-4 not only influences tight junction morphology but also partially restores barrier function. Understanding the structural basis of claudin polymerization is crucial, as it offers insights into the dynamic nature of tight junctions. This knowledge could be applied to targeted therapeutic interventions, offering insight to repair or prevent barrier defects associated with pathological conditions, or introduce temporary barrier openings during drug delivery.

3.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542141

RESUMO

Claudin polymers constitute the tight junction (TJ) backbone that forms paracellular barriers, at least for bigger solutes. While some claudins also seal the barrier for small electrolytes, others form ion channels. For cation-selective claudin-15 and claudin-10b, structural models of channels embedded in homo-polymeric strands have been suggested. Here, we generated a model for the prototypic anion-selective claudin-10a channel. Based on previously established claudin-10b models, dodecamer homology models of claudin-10a embedded in two membranes were analyzed by molecular dynamics simulations. The results indicate that both claudin-10 isoforms share the same strand and channel architecture: Sidewise unsealed tetrameric pore scaffolds are interlocked with adjacent pores via the ß1ß2 loop of extracellular segment 1. This leads to TJ-like strands with claudin subunits arranged in four joined rows in two opposing membranes. Several but not all cis- and trans-interaction modes are indicated to be conserved among claudin-10a, -10b, and -15. However, pore-lining residues that differ between claudin-10a and -10b (i.e., R33/I35, A34/D36, K69/A71, N54/D56, H60/N62, R62/K64) result in opposite charge selectivity of channels. This was supported by electric field simulations for both claudins and is consistent with previous electrophysiological studies. In summary, for the first time, a structural and mechanistic model of complete and prototypic paracellular anion channels is provided. This improves understanding of epithelial paracellular transport.


Assuntos
Claudinas , Simulação de Dinâmica Molecular , Claudinas/metabolismo , Canais Iônicos , Junções Íntimas/metabolismo , Ânions/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA