Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Skin Res Technol ; 28(1): 133-141, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34555218

RESUMO

BACKGROUND: Both mesenchymal stromal cells (MSCs) and acellular dermal matrices (ADMs) represent fascinating therapeutic tools in the wound healing scenario. Strategies aimed at combining these two treatment modalities are currently under investigation. Moreover, scarcity of quantitative, nondestructive techniques for quality assessment of engineered tissues poses great limitations in regenerative medicine and collagen autofluorescence-based imaging techniques are acquiring great importance in this setting. OBJECTIVE: Our goals were to assess the in vitro interactions between ADSCs and ADMs and to analyze extracellular-matrix production. METHODS: Adipose-derived MSCs (ADSC) were plated on 8-mm punch biopsies of a commercially available ADM (Integra®). Conventional histology with hematoxylin-eosin staining, environmental scanning electron microscopy, and confocal-laser scanning microscopy were used to obtain imaging of ADSC-seeded ADMs. Collagen production by ADSCs was quantified by mean fluorescence intensity (MFI), expressed in terms of positive pixels/field, obtained through ImageJ software processing of three-dimensional projections from confocal scanning images. Control conditions included: fibroblast-seeded ADM, ADSC- and fibroblast-induced scaffolds, and Integra® alone. RESULTS: ADSCs were efficiently seeded on Integra® and were perfectly incorporated in the pores of the scaffold. Collagen production was revealed to be significantly higher when ADSCs were seeded on ADM rather than in all other control conditions. Collagen autofluorescence was efficiently used as a surrogate marker of ECM production. CONCLUSIONS: Combined therapies based on MSCs and collagenic ADMs are promising therapeutic options for chronic wounds. Not only ADSCs can be efficiently seeded on ADMs, but ADMs also seem to potentiate their regenerative properties, as highlightable from fluorescence confocal imaging.


Assuntos
Derme Acelular , Células-Tronco Mesenquimais , Colágeno , Imageamento Tridimensional , Microscopia Confocal
2.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467097

RESUMO

Dental implants are one of the most frequently used treatment options for tooth replacement, and titanium is the metal of choice due to its demonstrated superiority in resisting corrosion, lack of allergic reactions and mechanical strength. Surface roughness of titanium implants favors the osseointegration process; nevertheless, its topography may provide a suitable substrate for bacterial biofilm deposition, causing peri-implantitis and leading to implant failure. Subgingival prophylaxis treatments with cleansing powders aimed to remove the bacterial accumulation are under investigation. Two different air-polishing powders-glycine and tagatose-were assayed for their cleaning and antimicrobial potential against a Pseudomonas biofilm and for their effects on human dental pulp stem cells (hDPSCs), seeded on sandblasted titanium disks. Immunofluorescence analyses were carried out to evaluate cell adhesion, proliferation, stemness and osteogenic differentiation. The results demonstrate that both the powders have a great in vitro cleaning potential in the early period and do not show any negative effects during hDPSCs osteogenic differentiation process, suggesting their suitability for enhancing the biocompatibility of titanium implants. Our data suggest that the evaluated cleansing systems reduce microbial contamination and allow us to propose tagatose as an adequate alternative to the gold standard glycine for the air-polishing prophylaxis treatment.


Assuntos
Antibacterianos/farmacologia , Polpa Dentária/citologia , Dentifrícios/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Antibacterianos/efeitos adversos , Adesão Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Implantes Dentários/microbiologia , Dentifrícios/efeitos adversos , Glicina/efeitos adversos , Glicina/farmacologia , Hexoses/efeitos adversos , Hexoses/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Osteogênese , Pseudomonas aeruginosa/efeitos dos fármacos , Titânio/química
3.
Cells Tissues Organs ; 207(1): 46-57, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31261153

RESUMO

In the field of wound healing, stem cell-based strategies are gaining importance for their regenerative potential. Adipose-derived stem cells (ADSCs) are a particular subset of mesenchymal stem cells present in the stromal-vascular fraction of the adipose tissue, today considered very attractive for their relative abundance and accessibility in the human body. However, ADSCs are still not routinely used in normal clinical practice. Several studies have also reported ADSC transplantation in association with biomaterials in an attempt to enhance the local retention and growth rate of the cells. The aim of our study was to evaluate the ability of ADSCs to build a dermal scaffold to be potentially used as a dermal substitute in the field of wound healing, with optimal biocompatibility and mechanical properties. ADSCs were defined as CD90-, CD73-, and CD105-positive cells. ADSCs turned out to be capable of secreting all the main components of the extracellular matrix (ECM) upon stimulation, thus efficiently producing a collagen and fibronectin-containing dermal matrix. We also checked whether the ADSC-produced dermal scaffold could be seeded with keratinocytes. The scaffolding material directly produced by ADSCs has several advantages when compared to the commercially available ones: it is easily obtained from the patients and it is 100% biocompatible and supports cell-ECM interaction. Moreover, it represents a possible powerful therapeutic tool for patients with chronic ulcers since it appears to be potentially grafted with keratinocytes layers, thus bypassing the classical two-step grafting procedure.


Assuntos
Tecido Adiposo/citologia , Pele Artificial , Células-Tronco/citologia , Engenharia Tecidual/métodos , Tecido Adiposo/metabolismo , Colágeno Tipo IV/metabolismo , Epiderme/metabolismo , Matriz Extracelular/metabolismo , Humanos , Integrina alfaV/metabolismo , Queratinócitos/citologia , Cicatrização
4.
Ann Diagn Pathol ; 41: 106-111, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31233902

RESUMO

Poorly differentiated clusters (PDC) are aggregates of at least five neoplastic cells lacking evidence of glandular differentiation. By definition, they can be present at the invasive front (peripheral PDC or pPDC) and within the tumor stroma (central PDC or cPDC). In colorectal cancer (CRC), PDC are considered adverse prognosticators and seem to reflect epithelial mesenchymal transition (EMT). In this study, we have investigated the immuno-expression of two EMT-related proteins, E-cadherin and ß-catenin, in PDC of primary CRCs and matched liver metastases. pPDC always showed nuclear ß-catenin staining and diffusely reduced/absence of E-cadherin expression as opposed cPDC which showed nuclear ß-catenin immunoreactivity and E-cadherin expression in about 50% of cases. In addition, the pattern of ß-catenin and E-cadherin expression differed between PDC and the main tumor, and between primary CRC and liver metastasis (LM), in a percentage of cases. A discordant pattern of ß-catenin and E-cadherin expression between pPDC and cPDC, between main tumor and cPDC, and between primary CRC and LM, confirms that EMT is a dynamic and reversible process in CRC. On the overall, this suggests that pPDC and cPDC are biologically different. We may advocate that PDC develop at the tumor center (cPDC) and then some of them migrate towards the tumor periphery while progressively completing EMT process (pPDC). Based on these results, PDC presence and counting may have different prognostic relevance if the assessment is done at the invasive front of the tumor or in the intratumor stroma.


Assuntos
Adenocarcinoma/patologia , Neoplasias Colorretais/patologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Transição Epitelial-Mesenquimal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
5.
Int J Mol Sci ; 20(8)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31014017

RESUMO

Peri-implantitis-an infection caused by bacterial deposition of biofilm-is a common complication in dentistry which may lead to implant loss. Several decontamination procedures have been investigated to identify the optimal approach being capable to remove the bacterial biofilm without modifying the implant surface properties. Our study evaluated whether two different systems-Ni-Ti Brushes (Brush) and Air-Polishing with 40 µm bicarbonate powder (Bic40)-might alter the physical/chemical features of two different titanium surfaces-machined (MCH) and Ca++ nanostructured (NCA)-and whether these decontamination systems may affect the biological properties of human STRO-1+/c-Kit+ dental pulp stem cells (hDPSCs) as well as the bacterial ability to produce biofilm. Cell morphology, proliferation and stemness markers were analysed in hDPSCs grown on both surfaces, before and after the decontamination treatments. Our findings highlighted that Bic40 treatment either maintained the surface characteristics of both implants and allowed hDPSCs to proliferate and preserve their stemness properties. Moreover, Bic40 treatment proved effective in removing bacterial biofilm from both titanium surfaces and consistently limited the biofilm re-growth. In conclusion, our data suggest that Bic40 treatment may operatively clean smooth and rough surfaces without altering their properties and, consequently, offer favourable conditions for reparative cells to hold their biological properties.


Assuntos
Antígenos de Superfície/metabolismo , Detergentes/química , Proteínas Proto-Oncogênicas c-kit/metabolismo , Titânio/química , Antígenos de Superfície/genética , Biofilmes/efeitos dos fármacos , Proliferação de Células , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Humanos , Microscopia de Força Atômica , Proteínas Proto-Oncogênicas c-kit/genética , Pseudomonas aeruginosa/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Propriedades de Superfície , Titânio/farmacologia
6.
Exp Dermatol ; 27(10): 1152-1159, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30033578

RESUMO

Ex vivo fluorescence confocal microscopy (FCM) is an innovative imaging tool that can be used intraoperatively to obtain real-time images of untreated excised tissue with almost histologic resolution. As inflammatory diseases often share overlapping clinical features, histopathology evaluation is required for dubious cases, delaying definitive diagnoses, and therefore therapy. This study identifies key-features at ex vivo FCM for differential diagnoses of cutaneous inflammatory diseases, in particular, psoriasis, eczema, lichen planus and discoid lupus erythematosus. Retrospective ex vivo FCM and histological evaluations with relevant diagnoses were correlated with prospectively reported histopathologic diagnoses, to evaluate agreement and the level of expertise required for correct diagnoses. We demonstrated that ex vivo FCM enabled the distinction of the main inflammatory features in most cases, providing a substantial concordance to histopathologic diagnoses. Moreover, ex vivo FCM and histological evaluations reached a substantial agreement with histopathologic diagnoses both for all raters and for each operator. After a yet to be defined learning curve, these preliminary results suggest that dermatologists may be able to satisfactorily interpret ex vivo FCM images for correct real-time diagnoses. Despite some limitations mainly related to the equipment of FCM with a single objective lens, our study suggests that ex vivo FCM seems a promising tool in assisting diagnoses of cutaneous inflammatory lesions, with a level of accuracy quite close to that offered by histopathology. This is the first study to investigate ex vivo FCM application in cutaneous inflammatory lesions, and to evaluate the diagnostic capability of this technology.


Assuntos
Eczema/diagnóstico por imagem , Líquen Plano/diagnóstico por imagem , Lúpus Eritematoso Discoide/diagnóstico por imagem , Psoríase/diagnóstico por imagem , Diagnóstico Diferencial , Eczema/patologia , Fluorescência , Humanos , Líquen Plano/patologia , Lúpus Eritematoso Discoide/patologia , Microscopia Confocal , Psoríase/patologia , Estudos Retrospectivos
7.
Exp Cell Res ; 337(2): 160-9, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26238601

RESUMO

Lipodystrophy (LD) is a main side effect of antiretroviral therapy for HIV infection, and can be provoked by nucleoside reverse transcriptase inhibitors (NRTIs) and protease inhibitors (PIs). LD exists in different forms, characterized by fat loss, accumulation, or both, but its pathogenesis is still unclear. In particular, few data exist concerning the effects of antiretroviral drugs on adipocyte differentiation. Adipose tissue can arise either from mesenchymal stem cells (MSCs), that include bone marrow-derived MSCs (hBM-MSCs), or from ectodermal stem cells, that include dental pulp stem cells (hDPSCs). To analyze whether the embryonal origin of adipocytes might impact the occurrence of different phenotypes in LD, we quantified the effects of several antiretroviral drugs on the adipogenic differentiation of hBM-MSCs and hDPSCs. hBM-MSCs and hDPSCs were isolated from healthy donors. Cells were treated with 10 and 50 µM stavudine (d4T), efavirenz (EFV), atazanavir (ATV), ritonavir (RTV), and ATV-boosted RTV. Viability and adipogenesis were evaluated by staining with propidium iodide, oil red, and adipoRed; mRNA levels of genes involved in adipocyte differentiation, i.e. CCAAT/enhancer-binding protein alpha (CEBPα) and peroxisome proliferator-activated receptor gamma (PPARγ), and in adipocyte functions, i.e. fatty acid synthase (FASN), fatty acid binding protein-4 (FABP4), perilipin-1 (PLIN1) and 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2), were quantified by real time PCR. We found that ATV, RTV, EFV, and ATV-boosted RTV, but not d4T, caused massive cell death in both cell types. EFV and d4T affected the accumulation of lipid droplets and induced changes in mRNA levels of genes involved in adipocyte functions in hBM-MSCs, while RTV and ATV had little effects. All drugs stimulated the accumulation of lipid droplets in hDPSCs. Thus, the adipogenic differentiation of human stem cells can be influenced by antiretroviral drugs, and depends, at least in part, on their embryonal origin.


Assuntos
Adipócitos/efeitos dos fármacos , Antivirais/farmacologia , Polpa Dentária/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Infecções por Retroviridae/tratamento farmacológico , Retroviridae/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/virologia , Animais , Polpa Dentária/citologia , Polpa Dentária/virologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/virologia , Infecções por Retroviridae/patologia , Infecções por Retroviridae/virologia
8.
BMC Dev Biol ; 15: 14, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25879198

RESUMO

BACKGROUND: Human dental pulp represents a suitable alternative source of stem cells for the purpose of cell-based therapies in regenerative medicine, because it is relatively easy to obtain it, using low invasive procedures. This study characterized and compared two subpopulations of adult stem cells derived from human dental pulp (hDPSCs). Human DPSCs, formerly immune-selected for STRO-1 and c-Kit, were separated for negativity and positivity to CD34 expression respectively, and evaluated for cell proliferation, stemness maintenance, cell senescence and multipotency. RESULTS: The STRO-1(+)/c-Kit(+)/CD34(+) hDPSCs showed a slower proliferation, gradual loss of stemness, early cell senescence and apoptosis, compared to STRO-1(+)/c-Kit(+)/CD34(-) hDPSCs. Both the subpopulations demonstrated similar abilities to differentiate towards mesoderm lineages, whereas a significant difference was observed after the neurogenic induction, with a greater commitment of STRO-1(+)/c-Kit(+)/CD34(+) hDPSCs. Moreover, undifferentiated STRO-1(+)/c-Kit(+)/CD34(-) hDPSCs did not show any expression of CD271 and nestin, typical neural markers, while STRO-1(+)/c-Kit(+)/CD34(+) hDPSCs expressed both. CONCLUSIONS: These results suggest that STRO-1(+)/c-Kit(+)/CD34(-) hDPSCs and STRO-1(+)/c-Kit(+)/CD34(+) hDPSCs might represent two distinct stem cell populations, with different properties. These results trigger further analyses to deeply investigate the hypothesis that more than a single stem cell population resides within the dental pulp, to better define the flexibility of application of hDPSCs in regenerative medicine.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Células-Tronco/citologia , Antígenos CD34/imunologia , Antígenos de Superfície/imunologia , Proliferação de Células , Separação Celular , Humanos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Células-Tronco/imunologia , Células-Tronco/metabolismo
9.
J Hepatol ; 61(5): 1097-105, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24953023

RESUMO

BACKGROUND & AIMS: Human biliary tree stem/progenitor cells (hBTSCs) are multipotent epithelial stem cells, easily obtained from the biliary tree, with the potential for regenerative medicine in liver, biliary tree, and pancreas diseases. Recent reports indicate that human mesenchymal stem cells are able to modulate the T cell immune response. However, no information exists on the capabilities of hBTSCs to control the allogeneic response. The aims of this study were to evaluate FasL expression in hBTSCs, to study the in vitro interaction between hBTSCs and human lymphocytes, and the role of Fas/FasL modulation in inducing T cell apoptosis in hBTSCs/T cell co-cultures. METHODS: Fas and FasL expression were evaluated in situ and in vitro by immunofluorescence and western blotting. Co-cultures of hBTSCs with human leukocytes were used to analyze the influence of hBTSCs on lymphocytes activation and apoptosis. RESULTS: hBTSCs expressed HLA antigens and FasL in situ and in vitro. Western blot data demonstrated that hBTSCs constitutively expressed high levels of FasL that increased after co-culture with T cells. Confocal microscopy demonstrated that FasL expression was restricted to EpCAM(+)/LGR5(+) cells. FACS analysis of T cells co-cultured with hBTSCs indicated that hBTSCs were able to induce apoptosis in activated CD4(+) and CD8(+) T cell populations. Moreover, the Fas receptor appears to be more expressed in T cells co-cultured with hBTSCs than in resting T cells. CONCLUSIONS: Our data suggest that hBTSCs could modulate the T cell response through the production of FasL, which influences the lymphocyte Fas/FasL pathway by inducing "premature" apoptosis in CD4(+) and CD8(+) T cells.


Assuntos
Sistema Biliar/citologia , Sistema Biliar/imunologia , Proteína Ligante Fas/metabolismo , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/imunologia , Receptor fas/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/imunologia , Células-Tronco Adultas/metabolismo , Apoptose/imunologia , Sistema Biliar/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Técnicas de Cocultura , Células-Tronco Fetais/citologia , Células-Tronco Fetais/imunologia , Células-Tronco Fetais/metabolismo , Humanos , Imunomodulação , Ativação Linfocitária , Células-Tronco Multipotentes/metabolismo , Transdução de Sinais
10.
Expert Rev Clin Immunol ; 20(5): 463-484, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38163928

RESUMO

INTRODUCTION: Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease with systemic manifestations. Although the success of immune modulatory drug therapy is considerable, about 40% of patients do not respond to treatment. Mesenchymal stromal/stem cells (MSCs) have been demonstrated to have therapeutic potential for inflammatory diseases. AREAS COVERED: This review provides an update on RA disease and on pre-clinical and clinical studies using MSCs from bone marrow, umbilical cord, adipose tissue, and dental pulp, to regulate the immune response. Moreover, the clinical use, safety, limitations, and future perspective of MSCs in RA are discussed. Using the PubMed database and ClincalTrials.gov, peer-reviewed full-text papers, abstracts and clinical trials were identified from 1985 through to April 2023. EXPERT OPINION: MSCs demonstrated a satisfactory safety profile and potential for clinical efficacy. However, it is mandatory to deepen the investigations on how MSCs affect the proinflammatory deregulated RA patients' cells. MSCs are potentially good candidates for severe RA patients not responding to conventional therapies but a long-term follow-up after stem cells treatment and standardized protocols are needed. Future research should focus on well-designed multicenter randomized clinical trials with adequate sample sizes and properly selected patients satisfying RA criteria for a valid efficacy evaluation.


Assuntos
Artrite Reumatoide , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Artrite Reumatoide/terapia , Resultado do Tratamento , Transplante de Células-Tronco Mesenquimais/métodos , Estudos Multicêntricos como Assunto
11.
Cells ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786058

RESUMO

Fibrosis is a pathological condition consisting of a delayed deposition and remodeling of the extracellular matrix (ECM) by fibroblasts. This deregulation is mostly triggered by a chronic stimulus mediated by pro-inflammatory cytokines, such as TNF-α and IL-1, which activate fibroblasts. Due to their anti-inflammatory and immunosuppressive potential, dental pulp stem cells (DPSCs) could affect fibrotic processes. This study aims to clarify if DPSCs can affect fibroblast activation and modulate collagen deposition. We set up a transwell co-culture system, where DPSCs were seeded above the monolayer of fibroblasts and stimulated with LPS or a combination of TNF-α and IL-1ß and quantified a set of genes involved in inflammasome activation or ECM deposition. Cytokines-stimulated co-cultured fibroblasts, compared to unstimulated ones, showed a significant increase in the expression of IL-1ß, IL-6, NAIP, AIM2, CASP1, FN1, and TGF-ß genes. At the protein level, IL-1ß and IL-6 release as well as FN1 were increased in stimulated, co-cultured fibroblasts. Moreover, we found a significant increase of MMP-9 production, suggesting a role of DPSCs in ECM remodeling. Our data seem to suggest a crosstalk between cultured fibroblasts and DPSCs, which seems to modulate genes involved in inflammasome activation, ECM deposition, wound healing, and fibrosis.


Assuntos
Colágeno , Polpa Dentária , Fibroblastos , Inflamassomos , Células-Tronco , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Fibroblastos/metabolismo , Humanos , Inflamassomos/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Colágeno/metabolismo , Técnicas de Cocultura , Matriz Extracelular/metabolismo , Células Cultivadas , Citocinas/metabolismo , Derme/citologia , Derme/metabolismo , Interleucina-1beta/metabolismo
12.
Nanomaterials (Basel) ; 14(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38470723

RESUMO

Dental implants are regularly employed in tooth replacement, the good clinical outcome of which is strictly correlated to the choice of an appropriate implant biomaterial. Titanium-based implants are considered the gold standard for rehabilitation of edentulous spaces. However, the insurgence of allergic reactions, cellular sensitization and low integration with dental and gingival tissues lead to poor osseointegration, affecting the implant stability in the bone and favoring infections and inflammatory processes in the peri-implant space. These failures pave the way to develop and improve new biocompatible implant materials. CERID dental implants are made of a titanium core embedded in a zirconium dioxide ceramic layer, ensuring absence of corrosion, a higher biological compatibility and a better bone deposition compared to titanium ones. We investigated hDPSCs' biological behavior, i.e., cell adhesion, proliferation, morphology and osteogenic potential, when seeded on both CERID and titanium implants, before and after cleansing with two different procedures. SEM and AFM analysis of the surfaces showed that while CERID disks were not significantly affected by the cleansing system, titanium ones exhibited well-visible modifications after brush treatment, altering cell morphology. The proliferation rate of DPSCs was increased for titanium, while it remained unaltered for CERID. Both materials hold an intrinsic potential to promote osteogenic commitment of neuro-ectomesenchymal stromal cells. Interestingly, the CERID surface mitigated the immune response by inducing an upregulation of anti-inflammatory cytokine IL-10 on activated PBMCs when a pro-inflammatory microenvironment was established. Our in vitro results pave the way to further investigations aiming to corroborate the potential of CERID implants as suitable biomaterials for dental implant applications.

13.
ACS Appl Mater Interfaces ; 15(51): 59224-59235, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38091494

RESUMO

Biomaterials able to promote neuronal development and neurite outgrowth are highly desired in neural tissue engineering for the repair of damaged or disrupted neural tissue and restoring the axonal connection. For this purpose, the use of either electroactive or micro- and nanostructured materials has been separately investigated. Here, the use of a nanomodulated conductive poly(3,4-ethylendioxithiophene) poly(styrenesulfonate) (PEDOT/PSS) substrate that exhibits instructive topographical and electrical cues at the same time was investigated for the first time. In particular, thin films featuring grooves with sizes comparable with those of neuronal neurites (NanoPEDOT) were fabricated by electrochemical polymerization of PEDOT/PSS on a nanomodulated polycarbonate template. The ability of NanoPEDOT to support neuronal development and direct neurite outgrowth was demonstrated by assessing cell viability and proliferation, expression of neuronal markers, average neurite length, and direction of neuroblastoma N2A cells induced to differentiate on this novel support. In addition to the beneficial effect of the nanogrooved topography, a 30% increase was shown in the average length of neurites when differentiating cells were subjected to an electrical stimulation of a few microamperes for 6 h. The results reported here suggest a favorable effect on the neuronal development of the synergistic combination of nanotopography and electrical stimulation, supporting the use of NanoPEDOT in neural tissue engineering to promote physical and functional reconnection of impaired neural networks.


Assuntos
Neurogênese , Neurônios , Materiais Biocompatíveis/farmacologia , Neuritos/metabolismo , Condutividade Elétrica
14.
Front Cell Dev Biol ; 11: 1196023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206922

RESUMO

Introduction: In autoimmune diseases, particularly in systemic sclerosis and chronic periaortitis, a strict correlation between chronic inflammation and fibrosis exists. Since the currently used drugs prove mostly effective in suppressing inflammation, a better comprehension of the molecular mechanisms exerted by cell types implicated in fibro-inflammation is needed to develop novel therapeutic strategies. Mesenchymal stromal/stem cells (MSCs) are being matter of deep investigation to unveil their role in the evolution of fibrogenetic process. Several findings pointed out the controversial implication of MSCs in these events, with reports lining at a beneficial effect exerted by external MSCs and others highlighting a direct contribution of resident MSCs in fibrosis progression. Human dental pulp stem cells (hDPSCs) have demonstrated to hold promise as potential therapeutic tools due to their immunomodulatory properties, which strongly support their contribution to tissue regeneration. Methods: Our present study evaluated hDPSCs response to a fibro-inflammatory microenvironment, mimicked in vitro by a transwell co-culture system with human dermal fibroblasts, at early and late culture passages, in presence of TGF-ß1, a master promoter of fibrogenesis. Results and Discussion: We observed that hDPSCs, exposed to acute fibro-inflammatory stimuli, promote a myofibroblast-to-lipofibroblast transition, likely based on BMP2 dependent pathways. Conversely, when a chronic fibro-inflammatory microenvironment is generated, hDPSCs reduce their anti-fibrotic effect and acquire a pro-fibrotic phenotype. These data provide the basis for further investigations on the response of hDPSCs to varying fibro-inflammatory conditions.

15.
Life (Basel) ; 13(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36836820

RESUMO

BACKGROUND: MatriDerm and Integra are both widely used collagenic acellular dermal matrices (ADMs) in the surgical setting, with similar characteristics in terms of healing time and clinical indication. The aim of the present study is to compare the two ADMs in terms of clinical and histological results in the setting of dermato-oncological surgery. METHODS: Ten consecutive patients with medical indications to undergo surgical excision of skin cancers were treated with a 2-step procedure at our Dermatologic Surgery Unit. Immediately after tumor removal, both ADMs were positioned on the wound bed, one adjacent to the other. Closure through split-thickness skin grafting was performed after approximately 3 weeks. Conventional histology, immunostaining and ELISA assay were performed on cutaneous samples at different timepoints. RESULTS: No significant differences were detected in terms of either final clinical outcomes or in extracellular matrix content of the neoformed dermis. However, Matriderm was observed to induce scar retraction more frequently. In contrast, Integra was shown to carry higher infectious risk and to be more slowly reabsorbed into the wound bed. Sometimes foreign body-like granulomatous reactions were also observed, especially in Integra samples. CONCLUSIONS: Even in the presence of subtle differences between the ADMs, comparable global outcomes were demonstrated after dermato-oncological surgery.

16.
Stem Cell Res Ther ; 14(1): 31, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36805780

RESUMO

BACKGROUND: Human dental pulp stem cells represent a mesenchymal stem cell niche localized in the perivascular area of dental pulp and are characterized by low immunogenicity and immunomodulatory/anti-inflammatory properties. Pericytes, mural cells surrounding the endothelium of small vessels, regulate numerous functions including vessel growth, stabilization and permeability. It is well established that pericytes have a tight cross talk with endothelial cells in neoangiogenesis and vessel stabilization, which are regulated by different factors, i.e., microenvironment and flow-dependent shear stress. The aim of this study was to evaluate the effects of a pulsatile unidirectional flow in the presence or not of an inflammatory microenvironment on the biological properties of pericyte-like cells isolated from human dental pulp (hDPSCs). METHODS: Human DPSCs were cultured under both static and dynamic conditions with or without pre-activated peripheral blood mononuclear cells (PBMCs). Pulsatile unidirectional flow shear stress was generated by using a specific peristaltic pump. The angiogenic potential and inflammatory properties of hDPSCs were evaluated through reverse phase protein microarrays (RPPA), confocal immunofluorescence and western blot analyses. RESULTS: Our data showed that hDPSCs expressed the typical endothelial markers, which were up-regulated after endothelial induction, and were able to form tube-like structures. RPPA analyses revealed that these properties were modulated when a pulsatile unidirectional flow shear stress was applied to hDPSCs. Stem cells also revealed a downregulation of the immune-modulatory molecule PD-L1, in parallel with an up-regulation of the pro-inflammatory molecule NF-kB. Immune-modulatory properties of hDPSCs were also reduced after culture under flow-dependent shear stress and exposure to an inflammatory microenvironment. This evidence was strengthened by the detection of up-regulated levels of expression of pro-inflammatory cytokines in PBMCs. CONCLUSIONS: In conclusion, the application of a pulsatile unidirectional flow shear stress induced a modulation of immunomodulatory/inflammatory properties of dental pulp pericyte-like cells.


Assuntos
Células Endoteliais , Pericitos , Humanos , Polpa Dentária , Leucócitos Mononucleares , Células-Tronco
17.
Polymers (Basel) ; 14(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35683895

RESUMO

Bone substitute biomaterials (BSBs) represent a promising alternative to bone autografts, due to their biocompatibility, osteoconduction, slow resorption rates, and the ability to define and maintain volume for bone gain in dentistry. Many biomaterials are tailored to provide structural and biological support for bone regeneration, and allow the migration of bone-forming cells into the bone defect. Neural crest-derived stem cells isolated from human dental pulp (hDPSCs) represent a suitable stem cell source to study the biological effects of BSBs on osteoprogenitor cells involved in the physiological bone regenerative processes. This study aimed to evaluate how three different BSBs affect the stem cell properties, osteogenic differentiation, and inflammatory properties of hDPSCs. Our data highlight that BSBs do not alter cell proliferation and stemness markers expression, nor induce any inflammatory responses. Bone metabolism data show that hDPSCs exposed to the three BSBs distinctively secrete the factors supporting osteoblast activity and osteoclast activity. Our data indicate that (i) hDPSCs are a suitable stem cell source to study the effects of BSBs, and that (ii) the formulation of BSBs may condition the biological properties of stem cells, suggesting their versatile suitability to different dentistry applications.

18.
Front Physiol ; 13: 930804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060701

RESUMO

Poly (3,4-ethylendioxythiophene) polystyrene sulphonate (PEDOT:PSS) is the workhorse of organic bioelectronics and is steadily gaining interest also in tissue engineering due to the opportunity to endow traditional biomaterials for scaffolds with conductive properties. Biomaterials capable of promoting neural stem cell differentiation by application of suitable electrical stimulation protocols are highly desirable in neural tissue engineering. In this study, we evaluated the adhesion, proliferation, maintenance of neural crest stemness markers and neurogenic commitment of neural crest-derived human dental pulp stem cells (hDPSCs) cultured on PEDOT:PSS nanostructured thin films deposited either by spin coating (SC-PEDOT) or by electropolymerization (ED-PEDOT). In addition, we evaluated the immunomodulatory properties of hDPSCs on PEDOT:PSS by investigating the expression and maintenance of the Fas ligand (FasL). We found that both SC-PEDOT and ED-PEDOT thin films supported hDPSCs adhesion and proliferation; however, the number of cells on the ED-PEDOT after 1 week of culture was significantly higher than that on SC-PEDOT. To be noted, both PEDOT:PSS films did not affect the stemness phenotype of hDPSCs, as indicated by the maintenance of the neural crest markers Nestin and SOX10. Interestingly, neurogenic induction was clearly promoted on ED-PEDOT, as indicated by the strong expression of MAP-2 and ß -Tubulin-III as well as evident cytoskeletal reorganisation and appreciable morphology shift towards a neuronal-like shape. In addition, strong FasL expression was detected on both undifferentiated or undergoing neurogenic commitment hDPSCs, suggesting that ED-PEDOT supports the expression and maintenance of FasL under both expansion and differentiation conditions.

19.
Nutrients ; 14(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35565895

RESUMO

Energy drinks (EDs) are non-alcoholic beverages containing high amounts of caffeine and other psychoactive substances. EDs also contain herbal extract whose concentration is usually unknown. EDs can have several adverse effects on different organs and systems, but their effects on the gastrointestinal (GI) tract have been poorly investigated. To determine the acute effects of EDs on the GI tract, we administered EDs, coffee, soda cola, or water to Sprague-Dawley rats (n = 7 per group, randomly assigned) for up to five days, and analyzed the histopathological changes in the GI tract. Data were compared among groups by Kruskal-Wallis or Mann-Whitney tests. We found that, while EDs did not cause any evident acute lesion to the GI tract, they triggered eosinophilic infiltration in the intestinal mucosa; treatment with caffeine alone at the same doses found in EDs leads to the same effects, suggesting that it is caffeine and not other substances present in the EDs that causes this infiltration. The interruption of caffeine administration leads to the complete resolution of eosinophilic infiltration. As no systemic changes in pro-inflammatory or immunomodulating molecules were observed, our data suggest that caffeine present in ED can cause a local, transient inflammatory status that recruits eosinophils.


Assuntos
Bebidas Energéticas , Animais , Cafeína/efeitos adversos , Café , Bebidas Energéticas/efeitos adversos , Trato Gastrointestinal , Ratos , Ratos Sprague-Dawley
20.
Front Oral Health ; 2: 635055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047993

RESUMO

Dental mesenchymal stromal cells (MSCs) are multipotent cells present in dental tissues, characterized by plastic adherence in culture and specific surface markers (CD105, CD73, CD90, STRO-1, CD106, and CD146), common to all other MSC subtypes. Dental pulp, periodontal ligament, apical papilla, human exfoliated deciduous teeth, alveolar bone, dental follicle, tooth germ, and gingiva are all different sources for isolation and expansion of MSCs. Dental MSCs have regenerative and immunomodulatory properties; they are scarcely immunogenic but actively modulate T cell reactivity. in vitro studies and animal models of autoimmune diseases have provided evidence for the suppressive effects of dental MSCs on peripheral blood mononuclear cell proliferation, clearance of apoptotic cells, and promotion of a shift in the Treg/Th17 cell ratio. Appropriately stimulated MSCs produce anti-inflammatory mediators, such as transforming growth factor-ß (TGF-ß), prostaglandin E2, and interleukin (IL)-10. A particular mechanism through which MSCs exert their immunomodulatory action is via the production of extracellular vesicles containing such anti-inflammatory mediators. Recent studies demonstrated MSC-mediated inhibitory effects both on monocytes and activated macrophages, promoting their polarization to an anti-inflammatory M2-phenotype. A growing number of trials focusing on MSCs to treat autoimmune and inflammatory conditions are ongoing, but very few use dental tissue as a cellular source. Recent results suggest that dental MSCs are a promising therapeutic tool for immune-mediated disorders. However, the exact mechanisms responsible for dental MSC-mediated immunosuppression remain to be clarified, and impairment of dental MSCs immunosuppressive function in inflammatory conditions and aging must be assessed before considering autologous MSCs or their secreted vesicles for therapeutic purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA