Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Hum Genet ; 133(12): 1467-76, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25179167

RESUMO

Chronic cigarette smoking exposes airway epithelial cells to thousands of carcinogens, oxidants and DNA-damaging agents, creating a field of molecular injury in the airway and altering gene expression. Studies of cytologically normal bronchial epithelial cells from smokers have identified transcription-based biomarkers that may prove useful in early diagnosis of lung cancer, including a number of p53-regulated genes. The ability of p53 to regulate transcription is critical for tumor suppression, and this suggests that single-nucleotide polymorphisms (SNPs) in functional p53 binding sites (p53 response elements, or p53REs) that affect gene expression could influence susceptibility to cancer. To connect p53RE SNP genotype with gene expression and cancer risk, we identified a set of 204 SNPs in putative p53REs, and performed cis expression quantitative trait loci (eQTL) analysis, assessing associations between SNP genotypes and mRNA levels of adjacent genes in bronchial epithelial cells obtained from 44 cigarette smokers. To further test and validate these genotype-expression associations, we searched published eQTL studies from independent populations and determined that 53% (39/74) of the bronchial epithelial eQTLs were observed in at least one of other studies. SNPs in p53REs were also evaluated for effects on p53-DNA binding using a quantitative in vitro protein-DNA binding assay. Last, based on linkage disequilibrium, we found 6 p53RE SNPs associated with gene expression were identified as cancer risk SNPs by either genome-wide association studies or candidate gene studies. We provide an approach for identifying and evaluating potentially functional SNPs that may modulate the airway gene expression response to smoking and may influence susceptibility to cancers.


Assuntos
Células Epiteliais/metabolismo , Neoplasias Pulmonares/metabolismo , Elementos de Resposta , Fumar/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Sequência de Bases , Sítios de Ligação , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Desequilíbrio de Ligação , Neoplasias Pulmonares/etiologia , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Locos de Características Quantitativas , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Risco , Fumar/efeitos adversos , Transcriptoma
2.
Nucleic Acids Res ; 39(1): 178-89, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20817676

RESUMO

p53 coordinates the expression of an intricate network of genes in response to stress signals. Sequence-specific DNA binding is essential for p53-mediated tumor suppression. We evaluated the impact of single-nucleotide polymorphisms (SNPs) in p53 response elements (p53RE) on DNA binding and gene expression in response to DNA damage. Using a bioinformatics approach based on incorporating p53 binding strength into a position weight matrix, we selected 32 SNPs in putative and validated p53REs. The microsphere assay for protein-DNA binding (MAPD) and allele-specific expression analysis was employed to assess the impact of SNPs on p53-DNA binding and gene expression, respectively. Comparing activated p53 binding in nuclear extracts from doxorubicin- or ionizing radiation (IR)-treated human cells, we observed little difference in binding profiles. Significant p53 binding was observed for most polymorphic REs and several displayed binding comparable to the p21 RE. SNP alleles predicted to lower p53 binding indeed reduced binding in 25 of the 32 sequences. Chromatin immunoprecipitation-sequencing in lymphoblastoid cells confirmed p53 binding to seven polymorphic p53 REs in response to doxorubicin. In addition, five polymorphisms were associated with altered gene expression following doxorubicin treatment. Our findings demonstrate an effective strategy to identify and evaluate SNPs that may alter p53-mediated stress responses.


Assuntos
Polimorfismo de Nucleotídeo Único , Elementos de Resposta , Proteína Supressora de Tumor p53/metabolismo , Alelos , Sítios de Ligação , Células Cultivadas , Imunoprecipitação da Cromatina , Biologia Computacional , Dano ao DNA , Doxorrubicina/farmacologia , Humanos , Ligação Proteica , Análise de Sequência de DNA , Transcrição Gênica/efeitos dos fármacos
3.
Clin Epigenetics ; 15(1): 90, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231515

RESUMO

BACKGROUND: Tobacco smoking alters the DNA methylation profiles of immune cells which may underpin some of the pathogenesis of smoking-associated diseases. To link smoking-driven epigenetic effects in specific immune cell types with disease risk, we isolated six leukocyte subtypes, CD14+ monocytes, CD15+ granulocytes, CD19+ B cells, CD4+ T cells, CD8+ T cells, and CD56+ natural killer cells, from whole blood of 67 healthy adult smokers and 74 nonsmokers for epigenome-wide association study (EWAS) using Illumina 450k and EPIC methylation arrays. RESULTS: Numbers of smoking-associated differentially methylated sites (smCpGs) at genome-wide significance (p < 1.2 × 10-7) varied widely across cell types, from 5 smCpGs in CD8+ T cells to 111 smCpGs in CD19+ B cells. We found unique smoking effects in each cell type, some of which were not apparent in whole blood. Methylation-based deconvolution to estimate B cell subtypes revealed that smokers had 7.2% (p = 0.033) less naïve B cells. Adjusting for naïve and memory B cell proportions in EWAS and RNA-seq allowed the identification of genes enriched for B cell activation-related cytokine signaling pathways, Th1/Th2 responses, and hematopoietic cancers. Integrating with large-scale public datasets, 62 smCpGs were among CpGs associated with health-relevant EWASs. Furthermore, 74 smCpGs had reproducible methylation quantitative trait loci single nucleotide polymorphisms (SNPs) that were in complete linkage disequilibrium with genome-wide association study SNPs, associating with lung function, disease risks, and other traits. CONCLUSIONS: We observed blood cell-type-specific smCpGs, a naïve-to-memory shift among B cells, and by integrating genome-wide datasets, we identified their potential links to disease risks and health traits.


Assuntos
Metilação de DNA , Fumar , Adulto , Humanos , Fumar/efeitos adversos , Fumar/genética , Estudo de Associação Genômica Ampla , Epigenômica , Leucócitos , Fumar Tabaco , Ilhas de CpG , Epigênese Genética
4.
PLoS Genet ; 5(5): e1000462, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19424414

RESUMO

The p53 tumor suppressor regulates its target genes through sequence-specific binding to DNA response elements (REs). Although numerous p53 REs are established, the thousands more identified by bioinformatics are not easily subjected to comparative functional evaluation. To examine the relationship between RE sequence variation -- including polymorphisms -- and p53 binding, we have developed a multiplex format microsphere assay of protein-DNA binding (MAPD) for p53 in nuclear extracts. Using MAPD we measured sequence-specific p53 binding of doxorubicin-activated or transiently expressed p53 to REs from established p53 target genes and p53 consensus REs. To assess the sensitivity and scalability of the assay, we tested 16 variants of the p21 target sequence and a 62-multiplex set of single nucleotide (nt) variants of the p53 consensus sequence and found many changes in p53 binding that are not captured by current computational binding models. A group of eight single nucleotide polymorphisms (SNPs) was examined and binding profiles closely matched transactivation capability tested in luciferase constructs. The in vitro binding characteristics of p53 in nuclear extracts recapitulated the cellular in vivo transactivation capabilities for eight well-established human REs measured by luciferase assay. Using a set of 26 bona fide REs, we observed distinct binding patterns characteristic of transiently expressed wild type and mutant p53s. This microsphere assay system utilizes biologically meaningful cell extracts in a multiplexed, quantitative, in vitro format that provides a powerful experimental tool for elucidating the functional impact of sequence polymorphism and protein variation on protein/DNA binding in transcriptional networks.


Assuntos
DNA/genética , DNA/metabolismo , Técnicas Genéticas , Proteína Supressora de Tumor p53/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Núcleo Celular/metabolismo , Corantes Fluorescentes , Redes Reguladoras de Genes , Genes p53 , Técnicas Genéticas/estatística & dados numéricos , Humanos , Técnicas In Vitro , Microesferas , Modelos Genéticos , Mutagênese Sítio-Dirigida , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
5.
Cell Rep Med ; 1(4)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-33163982

RESUMO

Tobacco smoke exposure contributes to the global burden of communicable and chronic diseases. To identify immune cells affected by smoking, we use single-cell RNA sequencing on peripheral blood from smokers and nonsmokers. Transcriptomes reveal a subpopulation of FCGR3A (CD16)-expressing Natural Killer (NK)-like CD8 T lymphocytes that increase in smokers. Mass cytometry confirms elevated CD16+ CD8 T cells in smokers. Inferred as highly differentiated by pseudotime analysis, NK-like CD8 T cells express markers characteristic of effector memory re-expressing CD45RA T (TEMRA) cells. Indicative of immune aging, smokers' CD8 T cells are biased toward differentiated cells and smokers have fewer naïve cells than nonsmokers. DNA methylation-based models show that smoking dose is associated with accelerated aging and decreased telomere length, a biomarker of T cell senescence. Immune aging accompanies T cell senescence, which can ultimately lead to impaired immune function. This suggests a role for smoking-induced, senescence-associated immune dysregulation in smoking-mediated pathologies.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Fumar Cigarros/efeitos adversos , Receptores de IgG/metabolismo , Adulto , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Fumar Cigarros/imunologia , Feminino , Proteínas Ligadas por GPI/efeitos dos fármacos , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Doenças do Sistema Imunitário/fisiopatologia , Células Matadoras Naturais/imunologia , Antígenos Comuns de Leucócito , Masculino , Pessoa de Meia-Idade , Receptores de IgG/efeitos dos fármacos , Receptores de IgG/imunologia , Análise de Célula Única/métodos , Fumantes , Fumar/sangue
6.
Sci Total Environ ; 742: 140424, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32629249

RESUMO

The Anniston Community Health Survey (ACHS-I) was initially conducted from 2005 to 2007 to assess polychlorinated biphenyl (PCB) exposures in Anniston, Alabama residents. In 2014, a follow-up study (ACHS-II) was conducted to measure the same PCBs as in ACHS-I and additional compounds e.g., polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like non-ortho (cPCBs) substituted PCBs. In this epigenome-wide association study (EWAS), we examined the associations between PCDD, PCDF, and PCB exposures and DNA methylation. Whole blood DNA methylation was measured using Illumina EPIC arrays (n=292). We modeled lipid-adjusted toxic equivalencies (TEQs) for: ΣDioxins (sum of 28 PCDDs, PCDFs, cPCBs, and mPCBs), PCDDs, PCDFs, cPCBs, and mPCBs using robust multivariable linear regression adjusting for age, race, sex, smoking, bisulfite conversion batch, and estimated percentages of six blood cell types. Among all exposures we identified 10 genome-wide (Bonferroni p≤6.74E-08) and 116 FDR (p≤5.00E-02) significant associations representing 10 and 113 unique CpGs, respectively. Of the 10 genome-wide associations, seven (70%) occurred in the PCDDs and four (40%) of these associations had an absolute differential methylation ≥1.00%, based on the methylation difference between the highest and lowest exposure quartiles. Most of the associations (six, 60%) represented hypomethylation changes. Of the 10 unique CpGs, eight (80%) were in genes shown to be associated with dioxins and/or PCBs based on data from the 2019 Comparative Toxicogenomics Database. In this study, we have identified a set of CpGs in blood DNA that may be particularly susceptible to dioxin, furan, and dioxin-like PCB exposures.


Assuntos
Benzofuranos , Dioxinas , Bifenilos Policlorados/análise , Alabama , Metilação de DNA , Dibenzofuranos Policlorados , Seguimentos , Saúde Pública , Inquéritos e Questionários
7.
Epigenetics ; 15(4): 337-357, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31607210

RESUMO

Anniston, Alabama was home to a major polychlorinated biphenyl (PCB) production facility from 1929 until 1971. The Anniston Community Health Survey I and II (ACHS-I 2005-2007, ACHS-II 2013-2014) were conducted to explore the effects of PCB exposures. In this report we examined associations between PCB exposure and DNA methylation in whole blood using EPIC arrays (ACHS-I, n = 518; ACHS-II, n = 299). For both cohorts, 35 PCBs were measured in serum. We modelled methylation versus PCB wet-weight concentrations for: the sum of 35 PCBs, mono-ortho substituted PCBs, di-ortho substituted PCBs, tri/tetra-ortho substituted PCBs, oestrogenic PCBs, and antiestrogenic PCBs. Using robust multivariable linear regression, we adjusted for age, race, sex, smoking, total lipids, and six blood cell-type percentages. We carried out a two-stage analysis; discovery in ACHS-I followed by replication in ACHS-II. In ACHS-I, we identified 28 associations (17 unique CpGs) at p ≤ 6.70E-08 and 369 associations (286 unique CpGs) at FDR p ≤ 5.00E-02. A large proportion of the genes have been observed to interact with PCBs or dioxins in model studies. Among the 28 genome-wide significant CpG/PCB associations, 14 displayed replicated directional effects in ACHS-II; however, only one in ACHS-II was statistically significant at p ≤ 1.70E-04. While we identified many novel CpGs significantly associated with PCB exposures in ACHS-I, the differential methylation was modest and the effect was attenuated seven years later in ACHS-II, suggesting a lack of persistence of the associations between PCB exposures and altered DNA methylation in blood cells.


Assuntos
Metilação de DNA , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/sangue , Exposição Ocupacional/efeitos adversos , Bifenilos Policlorados/sangue , Adulto , Alabama , Ilhas de CpG , Poluentes Ambientais/toxicidade , Feminino , Inquéritos Epidemiológicos , Humanos , Masculino , Pessoa de Meia-Idade , Bifenilos Policlorados/toxicidade
8.
Clin Epigenetics ; 11(1): 87, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182156

RESUMO

BACKGROUND: Numerous studies have demonstrated that DNA methylation levels in the aryl hydrocarbon receptor repressor (AHRR) gene measured in cord blood are significantly associated with prenatal tobacco smoke exposure and can be used as a fetal exposure biomarker. The mechanism driving this demethylation has not been determined and it is unclear if all cord blood cell types are impacted. Nucleated red blood cells (nRBCs/CD235a+ cells) are developmentally immature RBCs that display genome-wide hypomethylation and are observed at increased frequency in the cord blood of smoking mothers. We tested if AHRR methylation levels in CD235a+ nRBCs or nRBC counts influenced AHRR methylation in whole cord blood. METHODS: Cord blood was collected from smoking (n = 34) and nonsmoking (n = 19) mothers and DNA was prepared from whole cord blood, isolated CD235a+ nRBCs, and CD14+ monocytes. AHRR methylation in cord blood DNA was measured using Illumina 850K arrays (cg05575921, chr5:373378). Pyrosequencing was used to compare methylation levels among cord blood, CD235a+, and CD14+ cells. We measured nRBC percentages using conventional complete blood counts and estimated percent nRBCs by a deconvolution model. RESULTS: Methylation levels in AHRR were significantly lower in nRBCs relative to whole cord blood and CD14+ monocytes. While AHRR methylation levels in the cell types were significantly correlated across all subjects, methylation values at the chr5:373378 CpG averaged 14.6% lower in nRBCs (range 0.4 to 24.8%; p = 3.8E-13) relative to CD14+, with nonsmokers showing a significantly greater hypomethylation (- 4.1%, p = 1.8E-02). Methylation level at the AHRR chr5:373378 CpG was strongly associated with self-reported smoking in both CD14+ monocytes (t test p = 5.7E-09) and nRBCs (p = 4.8E-08), as well as cotinine levels (regression p = 1.1E-07 and p = 3.6E-04, respectively). For subjects with whole blood 850K data, robust linear regression models adjusting for estimated cell type composition, either including nRBCs counts or estimates, modestly increased the association between smoking and cg05575921 methylation. CONCLUSIONS: Prenatal smoke exposure was highly significantly associated with AHRR methylation in cord blood, CD14+ monocytes, and CD235a+ nRBCs. AHRR methylation levels in nRBCs and nRBC counts had minimal effect on cord blood methylation measurements. However, regression models using estimated nRBCs or actual nRBC counts outperformed those lacking these covariates.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Desmetilação do DNA , Eritrócitos/imunologia , Glicoforinas/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Proteínas Repressoras/genética , Fumar/efeitos adversos , Adulto , Ilhas de CpG , Epigênese Genética , Contagem de Eritrócitos , Feminino , Sangue Fetal/imunologia , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Idade Materna , Gravidez , Análise de Sequência de DNA , Fumar/genética , Adulto Jovem
9.
Environ Health Perspect ; 127(4): 47009, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31039056

RESUMO

BACKGROUND: Maternal tobacco smoke exposure has been associated with altered DNA methylation. However, previous studies largely used methylation arrays, which cover a small fraction of CpGs, and focused on whole cord blood. OBJECTIVES: The current study examined the impact of in utero exposure to maternal tobacco smoke on the cord blood [Formula: see text] DNA methylome. METHODS: The methylomes of 20 Hispanic white newborns ([Formula: see text] exposed to any maternal tobacco smoke in pregnancy; [Formula: see text] unexposed) from the Maternal and Child Health Study (MACHS) were profiled by whole-genome bisulfite sequencing (median coverage: [Formula: see text]). Statistical analyses were conducted using the Regression Analysis of Differential Methylation (RADMeth) program because it performs well on low-coverage data (minimizes false positives and negatives). RESULTS: We found that 10,381 CpGs were differentially methylated by tobacco smoke exposure [neighbor-adjusted p-values that are additionally corrected for multiple testing based on the Benjamini-Hochberg method for controlling the false discovery rate (FDR) [Formula: see text]]. From these CpGs, RADMeth identified 557 differentially methylated regions (DMRs) that were overrepresented ([Formula: see text]) in important regulatory regions, including enhancers. Of nine DMRs that could be queried in a reduced representation bisulfite sequencing (RRBS) study of adult [Formula: see text] cells ([Formula: see text] smokers; [Formula: see text] nonsmokers), four replicated ([Formula: see text]). Additionally, a CpG in the promoter of SLC7A8 (percent methylation difference: [Formula: see text] comparing exposed to unexposed) replicated ([Formula: see text]) in an EPIC (Illumina) array study of cord blood [Formula: see text] cells ([Formula: see text] exposed to sustained maternal tobacco smoke; [Formula: see text] unexposed) and in a study of adult [Formula: see text] cells across two platforms (EPIC: [Formula: see text] smokers; [Formula: see text] nonsmokers; 450K: [Formula: see text] smokers; [Formula: see text] nonsmokers). CONCLUSIONS: Maternal tobacco smoke exposure in pregnancy is associated with cord blood [Formula: see text] DNA methylation in key regulatory regions, including enhancers. While we used a method that performs well on low-coverage data, we cannot exclude the possibility that some results may be false positives. However, we identified a differentially methylated CpG in amino acid transporter SLC7A8 that is highly reproducible, which may be sensitive to cigarette smoke in both cord blood and adult [Formula: see text] cells. https://doi.org/10.1289/EHP3398.


Assuntos
Linfócitos T CD4-Positivos/química , Epigenoma/efeitos dos fármacos , Sangue Fetal/química , Exposição Materna , Poluição por Fumaça de Tabaco/análise , Adulto , Metilação de DNA/efeitos dos fármacos , Feminino , Humanos , Masculino , Adulto Jovem
10.
Mutat Res ; 659(1-2): 147-57, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18565787

RESUMO

The most common form of genetic variation, single nucleotide polymorphisms or SNPs, can affect the way an individual responds to the environment and modify disease risk. Although most of the millions of SNPs have little or no effect on gene regulation and protein activity, there are many circumstances where base changes can have deleterious effects. Non-synonymous SNPs that result in amino acid changes in proteins have been studied because of their obvious impact on protein activity. It is well known that SNPs within regulatory regions of the genome can result in disregulation of gene transcription. However, the impact of SNPs located in putative regulatory regions, or rSNPs, is harder to predict for two primary reasons. First, the mechanistic roles of non-coding genomic sequence remain poorly defined. Second, experimental validation of the functional consequences of rSNPs is often slow and laborious. In this review, we summarize traditional and novel methodologies for candidate rSNPs selection, in particular in silico techniques that aid in candidate rSNP selection. Additionally we will discuss molecular biological techniques that assess the impact of rSNPs on binding of regulatory machinery, as well as functional consequences on transcription. Standard techniques such as EMSA and luciferase reporter constructs are still widely used to assess effects of rSNPs on binding and gene transcription; however, these protocols are often bottlenecks in the discovery process. Therefore, we highlight novel and developing high-throughput protocols that promise to aid in shortening the process of rSNP validation. Given the large amount of genomic information generated from a multitude of re-sequencing and genome-wide SNP array efforts, future focus should be to develop validation techniques that will allow greater understanding of the impact these polymorphisms have on human health and disease.


Assuntos
Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico , Toxicogenética/métodos , Biologia Computacional , Regulação da Expressão Gênica , Instabilidade Genômica , Genótipo , Humanos , Fenótipo
11.
Environ Health Perspect ; 126(4): 047015, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29706059

RESUMO

BACKGROUND: Cigarette smoke is a causal factor in cancers and cardiovascular disease. Smoking-associated differentially methylated regions (SM-DMRs) have been observed in disease studies, but the causal link between altered DNA methylation and transcriptional change is obscure. OBJECTIVE: Our objectives were to finely resolve SM-DMRs and to interrogate the mechanistic link between SM-DMRs and altered transcription of enhancer noncoding RNA (eRNA) and mRNA in human circulating monocytes. METHOD: We integrated SM-DMRs identified by reduced representation bisulfite sequencing (RRBS) of circulating CD14+ monocyte DNA collected from two independent human studies [n=38 from Clinical Research Unit (CRU) and n=55 from the Multi-Ethnic Study of Atherosclerosis (MESA), about half of whom were active smokers] with gene expression for protein-coding genes and noncoding RNAs measured by RT-PCR or RNA sequencing. Candidate SM-DMRs were compared with RRBS of purified CD4+ T cells, CD8+ T cells, CD15+ granulocytes, CD19+ B cells, and CD56+ NK cells (n=19 females, CRU). DMRs were validated using pyrosequencing or bisulfite amplicon sequencing in up to 85 CRU volunteers, who also provided saliva DNA. RESULTS: RRBS identified monocyte SM-DMRs frequently located in putative gene regulatory regions. The most significant monocyte DMR occurred at a poised enhancer in the aryl-hydrocarbon receptor repressor gene (AHRR) and it was also detected in both granulocytes and saliva DNA. To our knowledge, we identify for the first time that SM-DMRs in or near AHRR, C5orf55-EXOC-AS, and SASH1 were associated with increased noncoding eRNA as well as mRNA in monocytes. Functionally, the AHRR SM-DMR appeared to up-regulate AHRR mRNA through activating the AHRR enhancer, as suggested by increased eRNA in the monocytes, but not granulocytes, from smokers compared with nonsmokers. CONCLUSIONS: Our findings suggest that AHRR SM-DMR up-regulates AHRR mRNA in a monocyte-specific manner by activating the AHRR enhancer. Cell type-specific activation of enhancers at SM-DMRs may represent a mechanism driving smoking-related disease. https://doi.org/10.1289/EHP2395.


Assuntos
Metilação de DNA/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA não Traduzido/efeitos dos fármacos , Fumar/efeitos adversos , Sulfitos/efeitos adversos , Transcrição Gênica/efeitos dos fármacos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Sequências Reguladoras de Ácido Nucleico/efeitos dos fármacos , Sequências Reguladoras de Ácido Nucleico/genética
12.
Cancer Res ; 65(1): 99-104, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15665284

RESUMO

Discovery and functional evaluation of biologically significant regulatory single nucleotide polymorphisms (SNP) in carcinogen metabolism genes is a difficult challenge because the phenotypic consequences may be both transient and subtle. We have used a gene expression screening approach to identify a functional regulatory SNP in glutathione S-transferase M3 (GSTM3). Anttila et al. proposed that variation in GSTM3 expression was affected by exposure to cigarette smoke and inheritance of the GSTM1-null genotype. To investigate the mechanism of GSTM3 expression was affected by exposure to cigarette smoke and inheritance of the GSTM1-null genotype. To investigate the mechanism of GSTM3 expression variation, we measured GSTM3 expression in lymphoblast cells from a human Centre d'Etude du Polymorphisme Humain family and observed a low expression phenotype. Promoter sequencing revealed two novel GSTM3 promoter SNPs: A/C and A/G SNPs, 63 and 783 bp upstream of the codon 1 start site, respectively. In this pedigree, the two children homozygous for the -63C/C genotype had 8-fold lower GSTM3 expression relative to the two children with the -63A/A genotype, with no association between A-783G SNP and GSTM3 expression. Further evaluation using genotyped glioma cell lines and with luciferase reporter constructs showed that the -63C allele was associated with lower GSTM3 expression (P < 0.0001 and P < 0.003). RNA pol II chromatin immunoprecipitation was combined with quantitative probed-based allelic discrimination genotyping to provide direct evidence of a 9-fold reduced RNA pol II binding capacity for the -63C allele. These results show that the GSTM3 -63C allele strongly affects gene expression in human cell lines and suggests that individuals who carry the low expression allele may be deficient in glutathione transferase catalyzed biological functions.


Assuntos
Variação Genética/genética , Glutationa Transferase/genética , Regiões Promotoras Genéticas/genética , Sequência de Bases , Linhagem Celular Tumoral , Cromatina/genética , Primers do DNA , DNA de Neoplasias/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genótipo , Glioma , Humanos , Masculino , Linhagem , Fenótipo , Reação em Cadeia da Polimerase
13.
Epigenetics ; 12(12): 1092-1100, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29166816

RESUMO

Alterations in DNA methylation and gene expression in blood leukocytes are potential biomarkers of harm and mediators of the deleterious effects of tobacco exposure. However, methodological issues, including the use of self-reported smoking status and mixed cell types have made previously identified alterations in DNA methylation and gene expression difficult to interpret. In this study, we examined associations of tobacco exposure with DNA methylation and gene expression, utilizing a biomarker of tobacco exposure (urine cotinine) and CD14+ purified monocyte samples from 934 participants of the community-based Multi-Ethnic Study of Atherosclerosis (MESA). Urine cotinine levels were measured using an immunoassay. DNA methylation and gene expression were measured with microarrays. Multivariate linear regression was used to test for associations adjusting for age, sex, race/ethnicity, education, and study site. Urine cotinine levels were associated with methylation of 176 CpGs [false discovery rate (FDR)<0.01]. Four CpGs not previously identified by studies of non-purified blood samples nominally replicated (P value<0.05) with plasma cotinine-associated methylation in 128 independent monocyte samples. Urine cotinine levels associated with expression of 12 genes (FDR<0.01), including increased expression of P2RY6 (Beta ± standard error = 0.078 ± 0.008, P = 1.99 × 10-22), a gene previously identified to be involved in the release of pro-inflammatory cytokines. No cotinine-associated (FDR<0.01) methylation profiles significantly (FDR<0.01) correlated with cotinine-associated (FDR<0.01) gene expression profiles. In conclusion, our findings i) identify potential monocyte-specific smoking-associated methylation patterns and ii) suggest that alterations in methylation may not be a main mechanism regulating gene expression in monocytes in response to cigarette smoking.


Assuntos
Metilação de DNA , Fumar Tabaco/genética , Idoso , Idoso de 80 Anos ou mais , Aterosclerose/epidemiologia , Cotinina/urina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Fumar Tabaco/epidemiologia , Fumar Tabaco/urina
15.
Neuro Oncol ; 8(2): 145-55, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16598069

RESUMO

Genes involved in phase I and phase II regulation of aromatic hydrocarbon-induced effects exhibit sequence variability that may mediate the risk of adult brain tumors. We evaluated associations between gene variants in CYP1A1, CYP1B1, GSTM3, EPHX1, and NQO1 and adult brain tumor incidence. Cases were patients with glioma (n = 489), meningioma (n = 197), or acoustic neuroma (n = 96) diagnosed from 1994 to 1998 at three U.S. hospitals. Controls were 799 patients admitted to the same hospitals for nonmalignant conditions. DNA was extracted from blood samples collected from 1277 subjects, and genotyping was conducted for CYP1A1 I462V, CYP1B1 V432L, EPHX1 Y113H, GSTM3 *A/*B (intron 6 deletion), and NQO1 P187S. The CYP1B1 V432L homozygous variant was associated with decreased risk of meningioma (odds ratio [OR] = 0.6; 95% CI, 0.3-1.0) but not the other tumor types. The GSTM3 *B/*B genotype was associated with increased risk of glioma (OR = 2.3; 95% CI, 1.0-5.2) and meningioma (OR = 3.6; 95% CI, 1.3-9.8). Increased risks associated with GSTM3 *B/*B were observed in younger subjects (age < 50) and older subjects (age > or = 50), in men and women, and within each study site. The magnitude of association for GSTM3 with glioma and meningioma was greater among ever-smokers than among those who had never smoked. None of the other genotypes showed consistent associations with any tumor type. The association with the GSTM3 *B allele, while intriguing, requires replication, and additional research is needed to clarify the function of the GSTM3 alleles studied here.


Assuntos
Neoplasias Encefálicas/genética , Predisposição Genética para Doença , Glioma/genética , Hidrocarbonetos Aromáticos/metabolismo , Meningioma/genética , Neuroma Acústico/genética , Adulto , Idoso , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1 , Epóxido Hidrolases/metabolismo , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fatores de Risco
16.
PLoS One ; 11(12): e0166486, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27935972

RESUMO

Tobacco smoke exposure dramatically alters DNA methylation in blood cells and may mediate smoking-associated complex diseases through effects on immune cell function. However, knowledge of smoking effects in specific leukocyte subtypes is limited. To better characterize smoking-associated methylation changes in whole blood and leukocyte subtypes, we used Illumina 450K arrays and Reduced Representation Bisulfite Sequencing (RRBS) to assess genome-wide DNA methylation. Differential methylation analysis in whole blood DNA from 172 smokers and 81 nonsmokers revealed 738 CpGs, including 616 previously unreported CpGs, genome-wide significantly associated with current smoking (p <1.2x10-7, Bonferroni correction). Several CpGs (MTSS1, NKX6-2, BTG2) were associated with smoking duration among heavy smokers (>22 cigarettes/day, n = 86) which might relate to long-term heavy-smoking pathology. In purified leukocyte subtypes from an independent group of 20 smokers and 14 nonsmokers we further examined methylation and gene expression for selected genes among CD14+ monocytes, CD15+ granulocytes, CD19+ B cells, and CD2+ T cells. In 10 smokers and 10 nonsmokers we used RRBS to fine map differential methylation in CD4+ T cells, CD8+ T cells, CD14+, CD15+, CD19+, and CD56+ natural killer cells. Distinct cell-type differences in smoking-associated methylation and gene expression were identified. AHRR (cg05575921), ALPPL2 (cg21566642), GFI1 (cg09935388), IER3 (cg06126421) and F2RL3 (cg03636183) showed a distinct pattern of significant smoking-associated methylation differences across cell types: granulocytes> monocytes>> B cells. In contrast GPR15 (cg19859270) was highly significant in T and B cells and ITGAL (cg09099830) significant only in T cells. Numerous other CpGs displayed distinctive cell-type responses to tobacco smoke exposure that were not apparent in whole blood DNA. Assessing the overlap between these CpG sites and differential methylated regions (DMRs) with RRBS in 6 cell types, we confirmed cell-type specificity in the context of DMRs. We identified new CpGs associated with current smoking, pack-years, duration, and revealed unique profiles of smoking-associated DNA methylation and gene expression among immune cell types, providing potential clues to hematopoietic lineage-specific effects in disease etiology.


Assuntos
Metilação de DNA , Epigenômica/métodos , Leucócitos/metabolismo , Fumar , Adulto , Fosfatase Alcalina/genética , Proteínas Reguladoras de Apoptose/genética , Linfócitos B/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ilhas de CpG/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética , Feminino , Proteínas Ligadas por GPI/genética , Expressão Gênica , Estudo de Associação Genômica Ampla/métodos , Granulócitos/metabolismo , Humanos , Leucócitos/classificação , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Monócitos/metabolismo , Receptores de Trombina/genética , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA/métodos , Linfócitos T/metabolismo , Fatores de Transcrição/genética , Adulto Jovem
17.
Toxicology ; 207(2): 191-202, 2005 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-15596250

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is highly toxic in experimental animals, and is known to induce cytochrome P450 (CYP) gene expression. We investigated the effect of CYP1A1 and CYP1B1 variant genotypes and haplotypes on CYP1A1 and CYP1B1 mRNA expression and ethoxyresorufin-O-deethylase (EROD) activity in lymphocytes from 121 subjects from the Seveso population, Italy, accidentally exposed to TCDD in 1976. The 3'UTR 3801T>C and I462V variants of CYP1A1 were present in 16% and 6% of the subjects, respectively. The frequency of CYP1B1 variants was 85.2% for L432V, 49.6% for R48G and A119S, and 28.7% for N453S. There was complete linkage disequilibrium (LD) among the CYP1B1 variant loci (D'=-1) and high LD among the CYP1A1 loci (D'=0.86). Gene expression measured by RT-PCR did not vary by CYP1B1 genotype in uncultured lymphocytes. However, when lymphocytes were treated in vitro with 10 nM TCDD, CYP1B1 and CYP1A1 mRNA expression was strongly induced and modified by CYP variant alleles. Specifically, the CYP1B1*3 haplotype (L432V) was associated with increased CYP1B1 mRNA expression (P=0.03), following an additive model; the CYP1A1 I462V polymorphism was positively, although not significantly, associated with CYP1A1 expression. The CYP1B1*3 variant may have affected CYP1B1 expression in subjects highly and acutely exposed to dioxin at the time of the accident. Although based on small number of subjects, a slight increase in eczema (P=0.05, n=8) and urticaria (P=0.02, n=2) was observed 20 years after the accident in subjects carrying the CYP1B1*3 allele. Genetic variation in cytochrome P450 induction may identify subjects with variable responsiveness to TCDD and potentially increased risk of disease.


Assuntos
Hidrocarboneto de Aril Hidroxilases/biossíntese , Citocromo P-450 CYP1A1/biossíntese , Poluentes Ambientais/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Dibenzodioxinas Policloradas/farmacologia , Hidrocarboneto de Aril Hidroxilases/genética , Células Cultivadas , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1 , Poluentes Ambientais/toxicidade , Indução Enzimática/efeitos dos fármacos , Feminino , Genótipo , Haplótipos , Humanos , Itália , Leucócitos Mononucleares/enzimologia , Masculino , Dibenzodioxinas Policloradas/toxicidade , RNA/biossíntese
18.
Circ Cardiovasc Genet ; 8(5): 707-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26307030

RESUMO

BACKGROUND: Tobacco smoke contains numerous agonists of the aryl hydrocarbon receptor (AhR) pathway, and activation of the AhR pathway was shown to promote atherosclerosis in mice. Intriguingly, cigarette smoking is most strongly and robustly associated with DNA modifications to an AhR pathway gene, the AhR repressor (AHRR). We hypothesized that altered AHRR methylation in monocytes, a cell type sensitive to cigarette smoking and involved in atherogenesis, may be a part of the biological link between cigarette smoking and atherosclerosis. METHODS AND RESULTS: DNA methylation profiles of AHRR in monocytes (542 CpG sites ± 150 kb of AHRR, using Illumina 450K array) were integrated with smoking habits and ultrasound-measured carotid plaque scores from 1256 participants of the Multi-Ethnic Study of Atherosclerosis (MESA). Methylation of cg05575921 significantly associated (P=6.1 × 10(-134)) with smoking status (current versus never). Novel associations between cg05575921 methylation and carotid plaque scores (P=3.1 × 10(-10)) were identified, which remained significant in current and former smokers even after adjusting for self-reported smoking habits, urinary cotinine, and well-known cardiovascular disease risk factors. This association replicated in an independent cohort using hepatic DNA (n=141). Functionally, cg05575921 was located in a predicted gene expression regulatory element (enhancer) and had methylation correlated with AHRR mRNA profiles (P=1.4 × 10(-17)) obtained from RNA sequencing conducted on a subset (n=373) of the samples. CONCLUSIONS: These findings suggest that AHRR methylation may be functionally related to AHRR expression in monocytes and represents a potential biomarker of subclinical atherosclerosis in smokers.


Assuntos
Aterosclerose/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Metilação de DNA , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas Repressoras/genética , Fumar , Idoso , Aterosclerose/etnologia , Aterosclerose/genética , População Negra/genética , Feminino , Estudos de Associação Genética , Hispânico ou Latino/genética , Humanos , Masculino , Monócitos/metabolismo , Fumar/etnologia , População Branca/genética
19.
Cancer Epidemiol Biomarkers Prev ; 12(1): 14-22, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12540498

RESUMO

GST and CYP2E1 genes are involved in metabolism of several compounds (e.g., solvents) that may play a role in brain cancer etiology. We evaluated associations between polymorphisms in these genes and adult brain tumor incidence. Cases were 782 patients with brain tumors diagnosed from 1994 to 1998 at three United States hospitals. Controls were 799 patients admitted to the same hospitals for nonmalignant conditions. DNA was extracted from blood samples that had been collected from 1277 subjects (80% of all subjects; 604 controls; 422 gliomas, 172 meningiomas, and 79 acoustic neuromas), and genotyping was successfully conducted for GSTM1 null, GSTT1 null, GSTP I105V, GSTP A114V, CYP2E1 RsaI, and CYP2E1 Ins96. The GSTP1 105 Val/Val genotype was associated with increased glioma incidence [odds ratio (OR), 1.8; 95% confidence limits (CLs), 1.2, 2.7], with the estimated effect following a trend of increasing magnitude by number of variant alleles (Ile/Ile: OR, 1.0; Ile/Val: OR, 1.3; Val/Val: OR, 2.1). The CYP2E1 RsaI variant was weakly associated with glioma (OR, 1.4; 95% CL, 0.9, 2.4) and acoustic neuroma (OR, 2.3; 95% CL, 1.0, 5.3), with some indication of stronger associations among younger subjects. Estimated effects of the gene variants differed by glioma subtype. There was evidence of supermultiplicativity of the joint effect of GSTP1 I105V and CYP2E1 RsaI variants on both glioma and acoustic neuroma, even following adjustment of estimates toward a common prior distribution using hierarchical regression models. Previously reported associations between the GSTT1 null genotype and overall glioma incidence were not replicated, but an association with meningioma was observed (OR, 1.5; 95% CL, 1.0, 2.3). These findings may provide clues to both genetic and environmental determinants of brain tumors.


Assuntos
Neoplasias Encefálicas/genética , Citocromo P-450 CYP2E1/genética , Glutationa Transferase/genética , Polimorfismo Genético , Adulto , Idoso , Neoplasias Encefálicas/epidemiologia , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Genótipo , Glioma/epidemiologia , Glioma/genética , Glutationa S-Transferase pi , Humanos , Incidência , Isoenzimas/genética , Masculino , Meningioma/epidemiologia , Meningioma/genética , Pessoa de Meia-Idade , Neuroma Acústico/epidemiologia , Neuroma Acústico/genética , Razão de Chances , Risco , Estados Unidos
20.
PLoS One ; 5(8): e11934, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20689807

RESUMO

Prior microarray studies of smokers at high risk for lung cancer have demonstrated that heterogeneity in bronchial airway epithelial cell gene expression response to smoking can serve as an early diagnostic biomarker for lung cancer. As a first step in applying functional genomic analysis to population studies, we have examined the relationship between gene expression variation and genetic variation in a central molecular pathway (NRF2-mediated antioxidant response) associated with smoking exposure and lung cancer. We assessed global gene expression in histologically normal airway epithelial cells obtained at bronchoscopy from smokers who developed lung cancer (SC, n = 20), smokers without lung cancer (SNC, n = 24), and never smokers (NS, n = 8). Functional enrichment analysis showed that the NRF2-mediated, antioxidant response element (ARE)-regulated genes, were significantly lower in SC, when compared with expression levels in SNC. Importantly, we found that the expression of MAFG (a binding partner of NRF2) was correlated with the expression of ARE genes, suggesting MAFG levels may limit target gene induction. Bioinformatically we identified single nucleotide polymorphisms (SNPs) in putative ARE genes and to test the impact of genetic variation, we genotyped these putative regulatory SNPs and other tag SNPs in selected NRF2 pathway genes. Sequencing MAFG locus, we identified 30 novel SNPs and two were associated with either gene expression or lung cancer status among smokers. This work demonstrates an analysis approach that integrates bioinformatics pathway and transcription factor binding site analysis with genotype, gene expression and disease status to identify SNPs that may be associated with individual differences in gene expression and/or cancer status in smokers. These polymorphisms might ultimately contribute to lung cancer risk via their effect on the airway gene expression response to tobacco-smoke exposure.


Assuntos
Antioxidantes/metabolismo , Brônquios/patologia , Perfilação da Expressão Gênica , Variação Genética , Neoplasias Pulmonares/genética , Mucosa Respiratória/metabolismo , Fumar/genética , Adulto , Idoso , Sítios de Ligação , Linhagem Celular Tumoral , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Humanos , Neoplasias Pulmonares/patologia , Fator de Transcrição MafG/metabolismo , Masculino , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/metabolismo , Elementos de Resposta/genética , Análise de Sequência de DNA , Fumar/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA