Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
J Hered ; 103(3): 380-90, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22504109

RESUMO

A 378-bp section of the mitochondrial displacement loop was used to estimate genetic diversity in the native Canadian equine populations. The inclusion of 10 Mountain and Moorland, 3 Nordic pony breeds, 2 feral populations, and 5 horse breeds were also investigated as they may have influenced the development (or rejuvenation) of the native Canadian populations. A total of 281 samples were sequenced, which produced 75 haplotypes derived from 54 informative sites. On further investigation, 36 of these 75 haplotypes were found to be previously unreported. Overall, total diversity was lowest in the feral Sable Island population with a haplotype diversity (0.27 ± 0.12), nucleotide diversity (0.0007 ± 0.0004), and pairwise difference of 0.286 ± 0.317. This is not surprising due to the geographic isolation of this population. Haplotype diversity was highest (1.00 ± 0.13) in the New Forest population, pairwise difference was highest (8.061 ± 4.028) in the Icelandic breed, whereas nucleotide diversity was highest in the Exmoor breed (0.0209 ± 0.0025). Within the Canadian populations, haplotype diversity was highest in the Newfoundland pony (0.96 ± 0.08), whereas pairwise difference and nucleotide diversity was highest in the Canadian horse (7.090 ± 3.581 and 0.0188 ± 0.0042, respectively). Three different estimates of genetic distances were used to examine the phylogenetic relationships amongst these populations. All 3 estimates produced similar topologies. In general, the native Canadian populations were highly represented in the D clade, with particular emphasis in the D1 and D2 clades. This is an important factor when considering the phylogenetic conservation of these Canadian equine populations.


Assuntos
Equidae/genética , Animais , Teorema de Bayes , Canadá , DNA Mitocondrial/genética , Feminino , Variação Genética , Haplótipos , Funções Verossimilhança , Modelos Genéticos , Filogenia , Análise de Sequência de DNA
2.
Ecol Evol ; 5(16): 3507-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26380682

RESUMO

Most species exist as subdivided ex situ daughter population(s) derived from a single original group of individuals. Such subdivision occurs for many reasons both natural and manmade. Traditional British and Irish pony breeds were introduced to North America (U.S.A. and Canada) within the last 150 years, and subsequently equivalent breed societies were established. We have analyzed selected U.K. and North American equivalent pony populations as a case study for understanding the relationship between putative source and derived subpopulations. Diversity was measured using mitochondrial DNA and a panel of microsatellite markers. Genetic signatures differed between the North American subpopulations according to historical management processes. Founder effect and stochastic drift was apparent, particularly pronounced in some breeds, with evidence of admixture of imported mares of different North American breeds. This demonstrates the importance of analysis of subpopulations to facilitate understanding the genetic effects of past management practices and to lead to informed future conservation strategies.

3.
J Hered ; 98(6): 594-602, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17855732

RESUMO

The present-day Sable Island horse population, inhabiting an island off the eastern coast of Canada, is believed to have originated mainly from horses confiscated from the early French settlers in Nova Scotia in the latter half of the 18th century. In 1960, the Sable Island horses were given legal protected status and no human interference has since been allowed. The objective of this study was to characterize the current genetic diversity in Sable Island horses in comparison to 15 other horse breeds commonly found in Canada and 5 Spanish breeds. A total of 145 alleles from 12 microsatellite loci were detected in 1093 horses and 40 donkeys. The average number of alleles per locus ranged from 4.67 in the Sable Island horse population to 8.25 in Appaloosas, whereas the mean observed heterozygosity ranged from 0.626 in the Sable Island population to 0.787 in Asturcons. Various genetic distance estimates and clustering methods did not permit to support that the Sable Island horses originated from shipwrecked Spanish horses, according to a popular anecdote, but closely resemble light draft and multipurpose breeds commonly found in eastern Canada. Based on the Weitzman approach, the loss of the Sable Island horse population to the overall diversity in Canada is comparable or higher than any other horse breed. The Sable Island horse population has diverged enough from other breeds to deserve special attention by conservation interest groups.


Assuntos
Variação Genética , Cavalos/genética , Animais , Animais Selvagens/genética , Ilhas Atlânticas , Cruzamento , Ecossistema , Feminino , Cavalos/classificação , Masculino , Linhagem , Saskatchewan , Especificidade da Espécie
4.
Evolution ; 43(7): 1522-1537, 1989 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28564231

RESUMO

We examined mitochondrial-DNA (mtDNA) sequence heterogeneity on four adjacent trapping grids in an island population of meadow voles (Microtus pennsylvanicus) at two different population densities. Four restriction endonucleases revealed 20 different mtDNA composite phenotypes in samples totaling 198 meadow voles. There were significant heterogeneities in the distribution of four common mtDNA composite phenotypes among the four trapping grids, suggesting that there is population subdivision on a fine scale. Genetic distances between grids, mtDNA diversity within grids, and GST also varied during the study period. We found a decrease in genetic distance and an increase in diversity when the population density was high and vice versa when the population density was low. When population density was high, the coefficient of gene differentiation was smaller than the same coefficient observed when the population density was low. These changes in population subdivision and diversity are consistent with theoretical expectations of population structure in which effective female population size and dispersal are the critical variables. The data also support the hypothesis of maintenance of mtDNA diversity by population subdivision, rapid population growth rate, and dispersal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA