Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
BMC Biotechnol ; 17(1): 13, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28193263

RESUMO

BACKGROUND: Decellularization of tendon tissue plays a pivotal role in current tissue engineering approaches for in vitro research as well as for translation of graft-based tendon restoration into clinics. Automation of essential decellularization steps like freeze-thawing is crucial for the development of more standardized decellularization protocols and commercial graft production under good manufacturing practice (GMP) conditions in the future. METHODS: In this study, a liquid nitrogen-based controlled rate freezer was utilized for automation of repeated freeze-thawing for decellularization of equine superficial digital flexor tendons. Additional tendon specimens underwent manually performed freeze-thaw cycles based on an established procedure. Tendon decellularization was completed by using non-ionic detergent treatment (Triton X-100). Effectiveness of decellularization was assessed by residual nuclei count and calculation of DNA content. Cytocompatibility was evaluated by culturing allogeneic adipose tissue-derived mesenchymal stromal cells on the tendon scaffolds. RESULTS: There were no significant differences in decellularization effectiveness between samples decellularized by the automated freeze-thaw procedure and samples that underwent manual freeze-thaw cycles. Further, we inferred no significant differences in the effectiveness of decellularization between two different cooling and heating rates applied in the automated freeze-thaw process. Both the automated protocols and the manually performed protocol resulted in roughly 2% residual nuclei and 13% residual DNA content. Successful cell culture was achieved with samples decellularized by automated freeze-thawing as well as with tendon samples decellularized by manually performed freeze-thaw cycles. CONCLUSIONS: Automated freeze-thaw cycles performed by using a liquid nitrogen-based controlled rate freezer were as effective as previously described manual freeze-thaw procedures for decellularization of equine superficial digital flexor tendons. The automation of this key procedure in decellularization of large tendon samples is an important step towards the processing of large sample quantities under standardized conditions. Furthermore, with a view to the production of commercially available tendon graft-based materials for application in human and veterinary medicine, the automation of key procedural steps is highly required to develop manufacturing processes under GMP conditions.


Assuntos
Separação Celular/instrumentação , Matriz Extracelular/química , Congelamento , Tendões/química , Tendões/citologia , Alicerces Teciduais , Animais , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Cavalos , Transplante de Células-Tronco Mesenquimais/instrumentação , Células-Tronco Mesenquimais/citologia , Projetos Piloto , Robótica/instrumentação , Engenharia Tecidual/instrumentação
2.
Stem Cells Int ; 2016: 7342379, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27630718

RESUMO

Tendon and ligament pathologies are still a therapeutic challenge, due to the difficulty in restoring the complex extracellular matrix architecture and biomechanical strength. While progress is being made in cell-based therapies and tissue engineering approaches, comprehensive understanding of the fate of progenitor cells in tendon healing is still lacking. The aim of this study was to investigate the effect of decellularized tendon matrix and moderate cyclic stretching as natural stimuli which could potentially direct tenogenic fate. Equine adipose-derived mesenchymal stromal cells (MSC) were seeded on decellularized tendon matrix scaffolds. Mechanical stimulation was applied in a custom-made cyclic strain bioreactor. Assessment was performed 4 h, 8 h, and 24 h following mechanical stimulation. Scaffold culture induced cell alignment and changes in expression of tendon-related genes, although cell viability was decreased compared to monolayer culture. Short mechanical stimulation periods enhanced most of the scaffold-induced effects. Collagen 1A2 expression levels were decreased, while collagen 3A1 and decorin levels were increased. Tenascin-C and scleraxis expression showed an initial decrease but had increased 24 h after stimulation. The results obtained suggest that decellularized tendon matrix, supported by cyclic stretching, can induce tenogenic differentiation and the synthesis of tendon components important for matrix remodeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA