Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39162269

RESUMO

Mediterranean diet is frequently associated with longevity and a lower incidence of adverse cardiovascular events because of the biological activities and health effects of olives - its key component. Olive oil, olive leaf extract, fruits and different by-products contain many bioactive components that exert anti-oxidant, anti-inflammatory and anti-apoptotic activities. In this review, we focus on the recent studies exploring molecular mechanisms underlying the cardioprotective properties of different olive oils, olive leave extracts, and specific micro-constituents (such as oleuropein, tyrosol, hydroxytyrosol and others) in vitro on rodent models and in clinical trials on human subjects. Particularly, hydroxytyrosol and oleuropein were identified as the major bioactive compounds responsible for the antioxidant, anti-inflammatory, anti-platelet aggregation and anti-atherogenic activities of olive oil. In total, the discussed results demonstrated a positive association between the consumption of olive oil and improvement in outcomes in atherosclerosis, diabetes, myocardial infarction, heart failure, hypertension and obesity.

2.
Curr Med Chem ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39289928

RESUMO

Foam cells play a crucial role in the initiation and progression of atherosclerosis, a condition marked by the development and growth of plaques that narrow blood vessel lumens. This narrowing can prevent normal blood flow and, in severe cases, lead to plaque rupture and blood clot formation, which can cause stroke or myocardial infarction. The origin of foam cells is diverse, arising from monocytes, vascular smooth muscle cells, stem/progenitor cells, and dendritic and endothelial cells. In their attempt to eliminate excess lipoproteins and cholesterol, foam cells inadvertently contribute to plaque development and rupture. Cholesterol uptake, efflux, and esterification are the major processes regulating foam cell formation. Advances in technology, such as the identification of cell-surface markers for lineage tracing and single-cell RNA sequencing, have unveiled diverse molecular mechanisms involved in the formation of foam cells from different origins, offering new insights into plaque formation and potential targets for anti-foam cell therapies. In this review, we focus on recent studies exploringthe inhibitory effects of medicinal plants and their bioactive components on foam cell formation. Various mechanisms are explored, including the inhibition of cholesterol uptake and the up-regulation of cholesterol efflux, as well as the suppression of inflammatory and adhesion activities. Emphasizing a cellular target-based therapeutic approach, this review envisions the development of innovative plant-based medications for atherosclerosis treatment.

3.
Curr Med Chem ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38529605

RESUMO

ATP-binding cassette transporter A1 (ABCA1) is one of the key proteins regulating cholesterol homeostasis and playing a crucial role in atherosclerosis development. ABCA1 regulates the rate-limiting step of reverse cholesterol transport, facilitates the efflux of surplus intracellular cholesterol and phospholipids, and suppresses inflammation through several signalling pathways. At the same time, many mutations and Single Nucleotide Polymorphisms (SNPs) have been identified in the ABCA1 gene, which affects its biological function and is associated with several hereditary diseases (such as familial hypo-alpha-lipoproteinaemia and Tangier disease) and increased risk of cardiovascular diseases (CVDs). This review summarises recently identified mutations and SNPs in their connection to atherosclerosis and associated CVDs. Also, we discuss the recently described application of various plant-derived compounds to modulate ABCA1 expression in different in vitro and in vivo models. Herein, we present a comprehensive overview of the association of ABCA1 mutations and SNPs with CVDs and as a pharmacological target for different natural-derived compounds and highlight the potential application of these phytochemicals for treating atherosclerosis through modulation of ABCA1 expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA