Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(12): 2672-2689.e25, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295404

RESUMO

Alphaviruses are RNA viruses that represent emerging public health threats. To identify protective antibodies, we immunized macaques with a mixture of western, eastern, and Venezuelan equine encephalitis virus-like particles (VLPs), a regimen that protects against aerosol challenge with all three viruses. Single- and triple-virus-specific antibodies were isolated, and we identified 21 unique binding groups. Cryo-EM structures revealed that broad VLP binding inversely correlated with sequence and conformational variability. One triple-specific antibody, SKT05, bound proximal to the fusion peptide and neutralized all three Env-pseudotyped encephalitic alphaviruses by using different symmetry elements for recognition across VLPs. Neutralization in other assays (e.g., chimeric Sindbis virus) yielded variable results. SKT05 bound backbone atoms of sequence-diverse residues, enabling broad recognition despite sequence variability; accordingly, SKT05 protected mice against Venezuelan equine encephalitis virus, chikungunya virus, and Ross River virus challenges. Thus, a single vaccine-elicited antibody can protect in vivo against a broad range of alphaviruses.


Assuntos
Alphavirus , Vírus da Encefalite Equina Venezuelana , Vacinas Virais , Animais , Camundongos , Vírus da Encefalite Equina Venezuelana/genética , Anticorpos Antivirais , Macaca
2.
Nat Methods ; 20(1): 70-74, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456785

RESUMO

Applying rational design, we developed 17 kDa cyanobacteriochrome-based near-infrared (NIR-I) fluorescent protein, miRFP718nano. miRFP718nano efficiently binds endogenous biliverdin chromophore and brightly fluoresces in mammalian cells and tissues. miRFP718nano has maximal emission at 718 nm and an emission tail in the short-wave infrared (SWIR) region, allowing deep-penetrating off-peak fluorescence imaging in vivo. The miRFP718nano structure reveals the molecular basis of its red shift. We demonstrate superiority of miRFP718nano-enabled SWIR imaging over NIR-I imaging of microbes in the mouse digestive tract, mammalian cells injected into the mouse mammary gland and NF-kB activity in a mouse model of liver inflammation.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Camundongos , Animais , Corantes Fluorescentes/química , Mamíferos
3.
Nat Methods ; 19(6): 740-750, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35606446

RESUMO

Small near-infrared (NIR) fluorescent proteins (FPs) are much needed as protein tags for imaging applications. We developed a 17 kDa NIR FP, called miRFP670nano3, which brightly fluoresces in mammalian cells and enables deep-brain imaging. By exploring miRFP670nano3 as an internal tag, we engineered 32 kDa NIR fluorescent nanobodies, termed NIR-Fbs, whose stability and fluorescence strongly depend on the presence of specific intracellular antigens. NIR-Fbs allowed background-free visualization of endogenous proteins, detection of viral antigens, labeling of cells expressing target molecules and identification of double-positive cell populations with bispecific NIR-Fbs against two antigens. Applying NIR-Fbs as destabilizing fusion partners, we developed molecular tools for directed degradation of targeted proteins, controllable protein expression and modulation of enzymatic activities. Altogether, NIR-Fbs enable the detection and manipulation of a variety of cellular processes based on the intracellular protein profile.


Assuntos
Anticorpos de Domínio Único , Animais , Corantes Fluorescentes , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mamíferos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
4.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047378

RESUMO

The rapid development of new microscopy techniques for cell biology has exposed the need for genetically encoded fluorescent tags with special properties. Fluorescent biomarkers of the same color and spectral range and different fluorescent lifetimes (FLs) became useful for fluorescent lifetime image microscopy (FLIM). One such tag, the green fluorescent protein BrUSLEE (Bright Ultimately Short Lifetime Enhanced Emitter), having an extremely short subnanosecond component of fluorescence lifetime (FL~0.66 ns) and exceptional fluorescence brightness, was designed for FLIM experiments. Here, we present the X-ray structure and discuss the structure-functional relations of BrUSLEE. Its development from the EGFP (enhanced green fluorescent proteins) precursor (FL~2.83 ns) resulted in a change of the chromophore microenvironment due to a significant alteration in the side chain conformations. To get further insight into molecular details explaining the observed differences in the photophysical properties of these proteins, we studied their structural, dynamic, and electric properties by all-atom molecular-dynamics simulations in an aqueous solution. It has been shown that compared to BrUSLEE, the mobility of the chromophore in the EGFP is noticeably limited by nonbonded interactions (mainly H-bonds) with the neighboring residues.


Assuntos
Corantes , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência/métodos
6.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 8): 1699-707, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26249350

RESUMO

A green-emitting fluorescent variant, NowGFP, with a tryptophan-based chromophore (Thr65-Trp66-Gly67) was recently developed from the cyan mCerulean by introducing 18 point mutations. NowGFP is characterized by bright green fluorescence at physiological and higher pH and by weak cyan fluorescence at low pH. Illumination with blue light induces irreversible photoconversion of NowGFP from a green-emitting to a cyan-emitting form. Here, the X-ray structures of intact NowGFP at pH 9.0 and pH 4.8 and of its photoconverted variant, NowGFP_conv, are reported at 1.35, 1.18 and 2.5 Šresolution, respectively. The structure of NowGFP at pH 9.0 suggests the anionic state of Trp66 of the chromophore to be the primary cause of its green fluorescence. At both examined pH values Trp66 predominantly adopted a cis conformation; only ∼ 20% of the trans conformation was observed at pH 4.8. It was shown that Lys61, which adopts two distinct pH-dependent conformations, is a key residue playing a central role in chromophore ionization. At high pH the side chain of Lys61 forms two hydrogen bonds, one to the indole N atom of Trp66 and the other to the carboxyl group of the catalytic Glu222, enabling an indirect noncovalent connection between them that in turn promotes Trp66 deprotonation. At low pH, the side chain of Lys61 is directed away from Trp66 and forms a hydrogen bond to Gln207. It has been shown that photoconversion of NowGFP is accompanied by decomposition of Lys61, with a predominant cleavage of its side chain at the C(γ)-C(δ) bond. Lys61, Glu222, Thr203 and Ser205 form a local hydrogen-bond network connected to the indole ring of the chromophore Trp66; mutation of any of these residues dramatically affects the spectral properties of NowGFP. On the other hand, an Ala150Val replacement in the vicinity of the chromophore indole ring resulted in a new advanced variant with a 2.5-fold improved photostability.


Assuntos
Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/química , Triptofano/química , Ânions/química , Ânions/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/genética , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação Puntual , Conformação Proteica , Espectrometria de Fluorescência , Triptofano/genética
7.
Phys Chem Chem Phys ; 17(19): 12472-85, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25805012

RESUMO

Understanding the photoinduced dynamics of fluorescent proteins is essential for their applications in bioimaging. Despite numerous studies on the ultrafast dynamics, the delayed response of these proteins, which often results in population of kinetically trapped dark states of various origins, is largely unexplored. Here, by using transient absorption spectroscopy spanning the time scale from picoseconds to seconds, we reveal a hidden reactivity of the bright blue-light emitting protein mKalama1 previously thought to be inert. This protein shows no excited-state proton transfer during its nanosecond excited-state lifetime; however, its tyrosine-based chromophore undergoes deprotonation coupled to non-radiative electronic relaxation. Such deprotonation causes distinct optical absorption changes in the broad UV-to-NIR spectral range (ca. 300-800 nm); the disappearance of the transient absorption signal has a complex nature and spans the whole microsecond-to-second time scale. The mechanisms underlying the relaxation kinetics are disclosed based on the X-ray structural analysis of mKalama1 and the high-level electronic structure calculations of proposed intermediates in the photocycle. We conclude that the non-radiative excited-state decay includes two major branches: internal conversion coupled to intraprotein proton transfer, where a conserved residue E222 serves as the proton acceptor; and ionization induced by two consecutive resonant absorption events, followed by deprotonation of the chromophore radical cation to bulk solvent through a novel water-mediated proton-wire pathway. Our findings open up new perspectives on the dynamics of fluorescent proteins as tracked by its optical transient absorption in the time domain extending up to seconds.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Luz , Escuridão , Elétrons , Proteínas de Fluorescência Verde/química , Modelos Moleculares , Processos Fotoquímicos , Conformação Proteica , Espectrometria de Fluorescência
8.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 1): 31-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24419376

RESUMO

The rotational order-disorder (OD) structure of the reversibly photoswitchable fluorescent protein rsTagRFP is discussed in detail. The structure is composed of tetramers of 222 symmetry incorporated into the lattice in two different orientations rotated 90° with respect to each other around the crystal c axis and with tetramer axes coinciding with the crystallographic twofold axes. The random distribution of alternatively oriented tetramers in the crystal creates the rotational OD structure with statistically averaged I422 symmetry. Despite order-disorder pathology, the structure of rsTagRFP has electron-density maps of good quality for both non-overlapping and overlapping parts of the model. The crystal contacts, crystal internal architecture and a possible mechanism of rotational OD crystal formation are discussed.


Assuntos
Proteínas Luminescentes/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Proteína Vermelha Fluorescente
9.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1850-60, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23999308

RESUMO

A key property of proteins of the green fluorescent protein (GFP) family is their ability to form a chromophore group by post-translational modifications of internal amino acids, e.g. Ser65-Tyr66-Gly67 in GFP from the jellyfish Aequorea victoria (Cnidaria). Numerous structural studies have demonstrated that the green GFP-like chromophore represents the `core' structure, which can be extended in red-shifted proteins owing to modifications of the protein backbone at the first chromophore-forming position. Here, the three-dimensional structures of green laGFP (λex/λem = 502/511 nm) and red laRFP (λex/λem ≃ 521/592 nm), which are fluorescent proteins (FPs) from the lancelet Branchiostoma lanceolatum (Chordata), were determined together with the structure of a red variant laRFP-ΔS83 (deletion of Ser83) with improved folding. Lancelet FPs are evolutionarily distant and share only ∼20% sequence identity with cnidarian FPs, which have been extensively characterized and widely used as genetically encoded probes. The structure of red-emitting laRFP revealed three exceptional features that have not been observed in wild-type fluorescent proteins from Cnidaria reported to date: (i) an unusual chromophore-forming sequence Gly58-Tyr59-Gly60, (ii) the presence of Gln211 at the position of the conserved catalytic Glu (Glu222 in Aequorea GFP), which proved to be crucial for chromophore formation, and (iii) the absence of modifications typical of known red chromophores and the presence of an extremely unusual covalent bond between the Tyr59 C(ß) atom and the hydroxyl of the proximal Tyr62. The impact of this covalent bond on the red emission and the large Stokes shift (∼70 nm) of laRFP was verified by extensive structure-based site-directed mutagenesis.


Assuntos
Proteínas Luminescentes/química , Tirosina/química , Animais , Cristalografia por Raios X , Proteínas de Fluorescência Verde/química , Anfioxos , Ligação Proteica , Proteína Vermelha Fluorescente
10.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 6): 1005-12, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23695245

RESUMO

The yellow fluorescent protein phiYFPv (λem(max) ≃ 537 nm) with improved folding has been developed from the spectrally identical wild-type phiYFP found in the marine jellyfish Phialidium. The latter fluorescent protein is one of only two known cases of naturally occurring proteins that exhibit emission spectra in the yellow-orange range (535-555 nm). Here, the crystal structure of phiYFPv has been determined at 2.05 Å resolution. The `yellow' chromophore formed from the sequence triad Thr65-Tyr66-Gly67 adopts the bicyclic structure typical of fluorophores emitting in the green spectral range. It was demonstrated that perfect antiparallel π-stacking of chromophore Tyr66 and the proximal Tyr203, as well as Val205, facing the chromophore phenolic ring are chiefly responsible for the observed yellow emission of phiYFPv at 537 nm. Structure-based site-directed mutagenesis has been used to identify the key functional residues in the chromophore environment. The obtained results have been utilized to improve the properties of phiYFPv and its homologous monomeric biomarker tagYFP.


Assuntos
Hidrozoários/química , Proteínas Luminescentes/química , Motivos de Aminoácidos , Animais , Hidrozoários/genética , Proteínas Luminescentes/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Dobramento de Proteína , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Difração de Raios X
11.
Protein Sci ; 32(8): e4709, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37347539

RESUMO

We recently converted the GAF domain of NpR3784 cyanobacteriochrome into near-infrared (NIR) fluorescent proteins (FPs). Unlike cyanobacterichrome, which incorporates phycocyanobilin tetrapyrrole, engineered NIR FPs bind biliverdin abundant in mammalian cells, thus being the smallest scaffold for it. Here, we determined the crystal structure of the brightest blue-shifted protein of the series, miRFP670nano3, at 1.8 Å resolution, characterized its chromophore environment and explained the molecular basis of its spectral properties. Using the determined structure, we have rationally designed a red-shifted NIR FP, termed miRFP704nano, with excitation at 680 nm and emission at 704 nm. miRFP704nano exhibits a small size of 17 kDa, enhanced molecular brightness, photostability and pH-stability. miRFP704nano performs well in various protein fusions in live mammalian cells and should become a versatile genetically-encoded NIR probe for multiplexed imaging across spatial scales in different modalities.


Assuntos
Proteínas de Bactérias , Fitocromo , Animais , Proteínas Luminescentes/química , Proteínas de Bactérias/química , Biliverdina/metabolismo , Fitocromo/química , Fitocromo/metabolismo , Mamíferos
12.
Nat Commun ; 14(1): 7593, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989731

RESUMO

The HIV-1 fusion peptide (FP) represents a promising vaccine target, but global FP sequence diversity among circulating strains has limited anti-FP antibodies to ~60% neutralization breadth. Here we evolve the FP-targeting antibody VRC34.01 in vitro to enhance FP-neutralization using site saturation mutagenesis and yeast display. Successive rounds of directed evolution by iterative selection of antibodies for binding to resistant HIV-1 strains establish a variant, VRC34.01_mm28, as a best-in-class antibody with 10-fold enhanced potency compared to the template antibody and ~80% breadth on a cross-clade 208-strain neutralization panel. Structural analyses demonstrate that the improved paratope expands the FP binding groove to accommodate diverse FP sequences of different lengths while also recognizing the HIV-1 Env backbone. These data reveal critical antibody features for enhanced neutralization breadth and potency against the FP site of vulnerability and accelerate clinical development of broad HIV-1 FP-targeting vaccines and therapeutics.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Anticorpos Anti-HIV , Anticorpos Neutralizantes , Peptídeos , Sequência de Aminoácidos , Vacinas de Subunidades Antigênicas , Testes de Neutralização , Produtos do Gene env do Vírus da Imunodeficiência Humana
13.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 9): 1088-97, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22948909

RESUMO

The crystal structures of the far-red fluorescent proteins (FPs) eqFP650 (λ(ex)(max)/λ(em)(max) 592/650 nm) and eqFP670 (λ(ex)(max)/λ(em)(max) 605/670 nm), the successors of the far-red FP Katushka (λ(ex)(max)/λ(em)(max) 588/635 nm), have been determined at 1.8 and 1.6 Å resolution, respectively. An examination of the structures demonstrated that there are two groups of changes responsible for the bathochromic shift of excitation/emission bands of these proteins relative to their predecessor. The first group of changes resulted in an increase of hydrophilicity at the acylimine site of the chromophore due to the presence of one and three water molecules in eqFP650 and eqFP670, respectively. These water molecules provide connection of the chromophore with the protein scaffold via hydrogen bonds causing an ~15 nm bathochromic shift of the eqFP650 and eqFP670 emission bands. The second group of changes observed in eqFP670 arises from substitution of both Ser143 and Ser158 by asparagines. Asn143 and Asn158 of eqFP670 are hydrogen bonded with each other, as well as with the protein scaffold and with the p-hydroxyphenyl group of the chromophore, resulting in an additional ~20 nm bathochromic shift of the eqFP670 emission band as compared to eqFP650. The role of the observed structural changes was verified by mutagenesis.


Assuntos
Proteínas Luminescentes/química , Sequência de Aminoácidos , Cristalografia por Raios X , Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteína Vermelha Fluorescente
14.
Protein Sci ; 31(3): 688-700, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34936154

RESUMO

We describe an engineered violet fluorescent protein from the lancelet Branchiostoma floridae (bfVFP). This is the first example of a GFP-like fluorescent protein with a stable fluorescent chromophore lacking an imidazolinone ring; instead, it consists of oxidized tyrosine 68 flanked by glycine 67 and alanine 69. bfVFP contains the simplest chromophore reported in fluorescent proteins and was generated from the yellow protein lanFP10A2 by two synergetic mutations, S148H and C166I. The chromophore structure was confirmed crystallographically and by high-resolution mass spectrometry. The photophysical characteristics of bfVFP (323/430 nm, quantum yield 0.33, and Ec 14,300 M-1  cm-1 ) make it potentially useful for multicolor experiments to expand the excitation range of available FP biomarkers and Förster resonance energy transfer with blue and cyan fluorescent protein acceptors.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Tirosina , Alanina , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Mutação , Tirosina/química
15.
J Biol Chem ; 285(21): 15978-84, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20220148

RESUMO

The acGFPL is the first-identified member of a novel, colorless and non-fluorescent group of green fluorescent protein (GFP)-like proteins. Its mutant aceGFP, with Gly replacing the invariant catalytic Glu-222, demonstrates a relatively fast maturation rate and bright green fluorescence (lambda(ex) = 480 nm, lambda(em) = 505 nm). The reverse G222E single mutation in aceGFP results in the immature, colorless variant aceGFP-G222E, which undergoes irreversible photoconversion to a green fluorescent state under UV light exposure. Here we present a high resolution crystallographic study of aceGFP and aceGFP-G222E in the immature and UV-photoconverted states. A unique and striking feature of the colorless aceGFP-G222E structure is the chromophore in the trapped intermediate state, where cyclization of the protein backbone has occurred, but Tyr-66 still stays in the native, non-oxidized form, with C(alpha) and C(beta) atoms in the sp(3) hybridization. This experimentally observed immature aceGFP-G222E structure, characterized by the non-coplanar arrangement of the imidazolone and phenolic rings, has been attributed to one of the intermediate states in the GFP chromophore biosynthesis. The UV irradiation (lambda = 250-300 nm) of aceGFP-G222E drives the chromophore maturation further to a green fluorescent state, characterized by the conventional coplanar bicyclic structure with the oxidized double Tyr-66 C(alpha)=C(beta) bond and the conjugated system of pi-electrons. Structure-based site-directed mutagenesis has revealed a critical role of the proximal Tyr-220 in the observed effects. In particular, an alternative reaction pathway via Tyr-220 rather than conventional wild type Glu-222 has been proposed for aceGFP maturation.


Assuntos
Proteínas de Fluorescência Verde/química , Hidrozoários/química , Raios Ultravioleta , Animais , Cristalografia por Raios X , Proteínas de Fluorescência Verde/genética , Hidrozoários/genética , Mutação de Sentido Incorreto , Oxirredução/efeitos da radiação , Relação Estrutura-Atividade
16.
Comput Struct Biotechnol J ; 19: 2950-2959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136094

RESUMO

For the whole GFP family, a few cases, when a single mutation in the chromophore environment strongly inhibits maturation, were described. Here we study EYFP-F165G - a variant of the enhanced yellow fluorescent protein - obtained by a single F165G replacement, and demonstrated multiple fluorescent states represented by the minor emission peaks in blue and yellow ranges (~470 and ~530 nm), and the major peak at ~330 nm. The latter has been assigned to tryptophan fluorescence, quenched due to excitation energy transfer to the mature chromophore in the parental EYFP protein. EYFP-F165G crystal structure revealed two general independent routes of post-translational chemistry, resulting in two main states of the polypeptide chain with the intact chromophore forming triad (~85%) and mature chromophore (~15%). Our experiments thus highlighted important stereochemical role of the 165th position strongly affecting spectral characteristics of the protein. On the basis of the determined EYFP-F165G three-dimensional structure, new variants with ~ 2-fold improved brightness were engineered.

17.
J Biol Chem ; 284(46): 32028-39, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19737938

RESUMO

KillerRed is the only known fluorescent protein that demonstrates notable phototoxicity, exceeding that of the other green and red fluorescent proteins by at least 1,000-fold. KillerRed could serve as an instrument to inactivate target proteins or to kill cell populations in photodynamic therapy. However, the nature of KillerRed phototoxicity has remained unclear, impeding the development of more phototoxic variants. Here we present the results of a high resolution crystallographic study of KillerRed in the active fluorescent and in the photobleached non-fluorescent states. A unique and striking feature of the structure is a water-filled channel reaching the chromophore area from the end cap of the beta-barrel that is probably one of the key structural features responsible for phototoxicity. A study of the structure-function relationship of KillerRed, supported by structure-based, site-directed mutagenesis, has also revealed the key residues most likely responsible for the phototoxic effect. In particular, Glu(68) and Ser(119), located adjacent to the chromophore, have been assigned as the primary trigger of the reaction chain.


Assuntos
Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/toxicidade , Luz , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/toxicidade , Cristalografia por Raios X , Dermatite Fototóxica , Proteínas de Fluorescência Verde/genética , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Conformação Proteica
18.
J Am Chem Soc ; 132(7): 2243-53, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20121102

RESUMO

Fast-FT is a fluorescent timer (FT) engineered from DsRed-like fluorescent protein mCherry. Crystal structures of Fast-FT (chromophore Met66-Tyr67-Gly68) and its precursor with blocked blue-to-red conversion Blue102 (chromophore Leu66-Tyr67-Gly68) have been determined at the resolution of 1.15 A and 1.81 A, respectively. Structural data suggest that blue-to-red conversion, taking place in Fast-FT and in related FTs, is associated with the oxidation of Calpha2-Cbeta2 bond of Tyr67. Site directed mutagenesis revealed a crucial role of Arg70 and Tyr83 in the delayed oxidation of Calpha2-Cbeta2 bond, introducing the timing factor in maturation of the timer. Substitutions Ser217Ala and Ser217Cys in Fast-FT substantially slow down formation of an intermediate blue chromophore but do not affect much blue-to-red conversion, whereas mutations Arg70Lys or Trp83Leu, having little effect on the blue chromophore formation rate, markedly accelerates formation of the red chromophore. The chromophore of FTs adopts a cis-conformation stabilized by a hydrogen bond between its phenolate oxygen and the side chain hydroxyl of Ser146. In Blue102, a bulky side chain of Ile146 precludes the chromophore from adopting a "cis-like" conformation, blocking its blue-to-red conversion. Both Fast-FT and Blue102 structures revealed hydrolytic degradation of the chromophores. In Fast-FT, chromophore-forming Met66 residue is eliminated from the polypeptide chain, whereas Leu66 in Blue102 is cleaved out from the chromophore, decarboxylated and remains attached to the preceding Phe65. Hydrolysis of the chromophore competes with chromophore maturation and is driven by the same residues that participate in chromophore maturation.


Assuntos
Corantes Fluorescentes/química , Proteínas Luminescentes/química , Sequência de Aminoácidos , Cristalografia por Raios X , Cinética , Proteínas Luminescentes/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida
19.
Artigo em Inglês | MEDLINE | ID: mdl-20057073

RESUMO

Human interferon-lambda1 (IFN-lambda1(Ins)) and the extracellular domain of interferon-lambda1 receptor (IFN-lambda1R1) were expressed in Drosophila S2 cells and purified to homogeneity. Both IFN-lambda1(Ins) and interferon-lambda1 produced from Escherichia coli (IFN-lambda1(Bac)) were coupled with IFN-lambda1R1 at room temperature and the complexes were purified by gel filtration. Both complexes were crystallized; the crystals were flash-frozen at 100 K and diffraction data were collected to 2.16 and 2.1 A, respectively. Although the IFN-lambda1(Bac)-IFN-lambda1R1 and IFN-lambda1(Ins)-IFN-lambda1R1 complexes differed only in the nature of the expression system used for the ligand, their crystallization conditions and crystal forms were quite different. A search for heavy-atom derivatives as well as molecular-replacement trials are in progress.


Assuntos
Interleucinas/química , Receptores de Interferon/química , Animais , Cristalização , Cristalografia por Raios X , Drosophila , Humanos , Interferons
20.
J Mol Biol ; 432(13): 3749-3760, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32302608

RESUMO

Optically controlled receptor tyrosine kinases (opto-RTKs) allow regulation of RTK signaling using light. Until recently, the majority of opto-RTKs were activated with blue-green light. Fusing a photosensory core module of Deinococcus radiodurans bacterial phytochrome (DrBphP-PCM) to the kinase domains of neurotrophin receptors resulted in opto-RTKs controlled with light above 650 nm. To expand this engineering approach to RTKs of other families, here we combined the DrBpP-PCM with the cytoplasmic domains of EGFR and FGFR1. The resultant Dr-EGFR and Dr-FGFR1 opto-RTKs are rapidly activated with near-infrared and inactivated with far-red light. The opto-RTKs efficiently trigger ERK1/2, PI3K/Akt, and PLCγ signaling. Absence of spectral crosstalk between the opto-RTKs and green fluorescent protein-based biosensors enables simultaneous Dr-FGFR1 activation and detection of calcium transients. Action mechanism of the DrBphP-PCM-based opto-RTKs is considered using the available RTK structures. DrBphP-PCM represents a versatile scaffold for engineering of opto-RTKs that are reversibly regulated with far-red and near-infrared light.


Assuntos
Fitocromo/ultraestrutura , Receptores Proteína Tirosina Quinases/ultraestrutura , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Técnicas Biossensoriais , Deinococcus/química , Deinococcus/genética , Proteínas de Fluorescência Verde/química , Células HeLa , Humanos , Luz , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/genética , Fosfatidilinositol 3-Quinases/genética , Fitocromo/química , Fitocromo/genética , Conformação Proteica/efeitos da radiação , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptores de Fator de Crescimento Neural/química , Receptores de Fator de Crescimento Neural/genética , Transdução de Sinais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA