Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Cell ; 145(2): 284-99, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21496646

RESUMO

The synaptic insertion or removal of AMPA receptors (AMPAR) plays critical roles in the regulation of synaptic activity reflected in the expression of long-term potentiation (LTP) and long-term depression (LTD). The cellular events underlying this important process in learning and memory are still being revealed. Here we describe and characterize the AAA+ ATPase Thorase, which regulates the expression of surface AMPAR. In an ATPase-dependent manner Thorase mediates the internalization of AMPAR by disassembling the AMPAR-GRIP1 complex. Following genetic deletion of Thorase, the internalization of AMPAR is substantially reduced, leading to increased amplitudes of miniature excitatory postsynaptic currents, enhancement of LTP, and elimination of LTD. These molecular events are expressed as deficits in learning and memory in Thorase null mice. This study identifies an AAA+ ATPase that plays a critical role in regulating the surface expression of AMPAR and thereby regulates synaptic plasticity and learning and memory.


Assuntos
Adenosina Trifosfatases/metabolismo , Plasticidade Neuronal , Receptores de AMPA/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Humanos , Aprendizagem , Masculino , Memória , Camundongos , Dados de Sequência Molecular , Ratos , Alinhamento de Sequência , Sinapses
2.
Glia ; 70(7): 1289-1300, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35275429

RESUMO

Mitochondria are abundant in the fine processes of astrocytes, however, potential roles for astrocyte mitochondria remain poorly understood. In the present study, we performed a systematic examination of the effects of abnormal oxidative phosphorylation in astrocytes on several mouse behaviors. Impaired astrocyte oxidative phosphorylation was produced by astrocyte-specific deletion of the nuclear mitochondrial gene, Cox10, that encodes an accessory protein of complex IV, the protoheme:heme-O-farnesyl transferase. As expected, conditional deletion of the Cox10 gene in mice (cKO mice) significantly reduced expression of COX10 and Cytochrome c oxidase subunit I (MTCO1) of Complex IV, resulting in decreased oxidative phosphorylation without significantly affecting glycolysis. No effects of the deletion were observed on locomotor activity, anxiety-like behavior, nociception, or spontaneous alternation. Cox10 cKO female mice exhibited mildly impaired novel object recognition, while Cox10 cKO male mice were moderately deficient in trace fear conditioning. No group-related changes were observed in conditional place preference (CPP) that assessed effects of morphine on reward. In contrast to CPP, Cox10 cKO mice demonstrated significantly increased aversive behaviors produced by naloxone-precipitated withdrawal following chronic exposure to morphine, that is, jumping and avoidance behavior as assessed by conditional place aversion (CPA). Our study suggests that astrocyte oxidative phosphorylation may contribute to behaviors associated with greater cognitive load and/or aversive and stressful conditions.


Assuntos
Alquil e Aril Transferases , Dependência de Morfina , Síndrome de Abstinência a Substâncias , Alquil e Aril Transferases/metabolismo , Animais , Astrócitos/metabolismo , Medo , Feminino , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/metabolismo , Morfina/metabolismo , Morfina/farmacologia , Dependência de Morfina/metabolismo , Dependência de Morfina/psicologia , Naloxona/metabolismo , Naloxona/farmacologia , Antagonistas de Entorpecentes/metabolismo , Antagonistas de Entorpecentes/farmacologia , Respiração , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/psicologia
3.
Hum Mol Genet ; 29(17): 2936-2950, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32803234

RESUMO

Our understanding of the contribution of genetic risk factors to neuropsychiatric diseases is limited to abnormal neurodevelopment and neuronal dysfunction. Much less is known about the mechanisms whereby risk variants could affect the physiology of glial cells. Our prior studies have shown that a mutant (dominant-negative) form of a rare but highly penetrant psychiatric risk factor, Disrupted-In-Schizophrenia-1 (DISC1), impairs metabolic functions of astrocytes and leads to cognitive dysfunction. In order to overcome the limitations of the mutant DISC1 model and understand the putative regional properties of astrocyte DISC1, we assessed whether knockdown of Disc1 (Disc1-KD) in mature mouse astrocytes of the prefrontal cortex (PFC) or the hippocampus would produce behavioral abnormalities that could be attributed to astrocyte bioenergetics. We found that Disc1-KD in the hippocampus but not PFC impaired trace fear conditioning in adult mice. Using the innovative deep learning approach and convolutional deep neural networks (cDNNs), ResNet50 or ResNet18, and single cell-based analysis, we found that Disc1-KD decreased the spatial density of astrocytes associated with abnormal levels and distribution of the mitochondrial markers and the glutamate transporter, GLAST. Disc1-KD in astrocytes also led to decreased expression of the glutamatergic and increased expression of the GABA-ergic synaptic markers, possibly via non-apoptotic activation of caspase 3 in neurons located within the individual territories of Disc1-KD astrocytes. Our results indicate that altered expression of DISC1 in astrocytes could impair astrocyte bioenergetics, leading to abnormalities in synaptic neurotransmission and cognitive function in a region-dependent fashion.


Assuntos
Encéfalo/metabolismo , Cognição/fisiologia , Degeneração Neural/genética , Proteínas do Tecido Nervoso/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/patologia , Mapeamento Encefálico , Aprendizado Profundo , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Rede Nervosa/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia
4.
J Neurosci Res ; 100(2): 444-460, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34935171

RESUMO

Emerging evidence indicates that probiotics can influence the gut-brain axis to ameliorate somatic and behavioral symptoms associated with brain disorders. However, whether probiotics have effects on the electrophysiological activities of individual neurons in the brain has not been evaluated at a single-neuron resolution, and whether the neuronal effects of probiotics depend on the gut microbiome status have yet to be tested. Thus, we conducted whole-cell patch-clamp recording-assisted electrophysiological characterizations of the neuronal effects of probiotics in male germ-free (GF) mice with and without gut microbiome colonization. Two weeks of treatment with probiotics (Lactobacillus rhamnosus and Bifidobacterium animalis) significantly and selectively increased the intrinsic excitability of hippocampal CA1 pyramidal neurons, whereas reconstituting gut microbiota in GF mice reversed the effects of the probiotics leading to a decreased intrinsic excitability in hippocampal neurons. This bidirectional modulation of neuronal excitability by probiotics was observed in hippocampal neurons with corresponding basal membrane property and action potential waveform changes. However, unlike the hippocampus, the amygdala excitatory neurons did not show any electrophysiological changes to the probiotic treatment in either GF or conventionalized GF mice. Our findings demonstrate for the first time how probiotic treatment can have a significant influence on the electrophysiological properties of neurons, bidirectionally modulating their intrinsic excitability in a gut microbiota and brain area-specific manner.


Assuntos
Microbioma Gastrointestinal , Probióticos , Animais , Microbioma Gastrointestinal/fisiologia , Hipocampo , Masculino , Camundongos , Neurônios , Probióticos/farmacologia , Células Piramidais/fisiologia
5.
Brain Behav Immun ; 99: 3-8, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547401

RESUMO

Viral infections during pregnancy are associated with increased incidence of psychiatric disorders in offspring. The pathological outcomes of viral infection appear to be caused by the deleterious effects of innate immune response-associated factors on development of the fetus, which predispose the offspring to pathological conditions in adulthood. The negative impact of viral infections varies substantially between pregnancies. Here, we explored whether differential stress sensitivity underlies the high heterogeneity of immune reactivity and whether this may influence the pathological consequences of maternal immune activation. Using mouse models of social dominance (Dom) and submissiveness (Sub), which possess innate features of stress resilience and vulnerability, respectively, we identified differential immune reactivity to the synthetic analogue of viral double-stranded RNA, Poly(I:C), in Sub and Dom nulliparous and pregnant females. More specifically, we found that Sub females showed an exacerbated pro- and anti-inflammatory cytokine response to Poly(I:C) as compared with Dom females. Sub offspring born to Sub mothers (stress sensitive offspring) showed enhanced locomotory response to the non-competitive NMDA antagonist, MK-801, which was potentiated by prenatal Poly(I:C) exposure. Our findings suggest that inherited stress sensitivity may lead to functional changes in glutamatergic signaling, which in turn is further exacerbated by prenatal exposure to viral-like infection. The maternal immunome seems to play a crucial role in these observed phenomena.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Animais , Comportamento Animal/fisiologia , Citocinas , Modelos Animais de Doenças , Feminino , Camundongos , Poli I-C/farmacologia , Gravidez
6.
Proc Natl Acad Sci U S A ; 116(5): 1686-1691, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30635412

RESUMO

While neuroinflammation is an evolving concept and the cells involved and their functions are being defined, microglia are understood to be a key cellular mediator of brain injury and repair. The ability to measure microglial activity specifically and noninvasively would be a boon to the study of neuroinflammation, which is involved in a wide variety of neuropsychiatric disorders including traumatic brain injury, demyelinating disease, Alzheimer's disease (AD), and Parkinson's disease, among others. We have developed [11C]CPPC [5-cyano-N-(4-(4-[11C]methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide], a positron-emitting, high-affinity ligand that is specific for the macrophage colony-stimulating factor 1 receptor (CSF1R), the expression of which is essentially restricted to microglia within brain. [11C]CPPC demonstrates high and specific brain uptake in a murine and nonhuman primate lipopolysaccharide model of neuroinflammation. It also shows specific and elevated uptake in a murine model of AD, experimental allergic encephalomyelitis murine model of demyelination and in postmortem brain tissue of patients with AD. Radiation dosimetry in mice indicated [11C]CPPC to be safe for future human studies. [11C]CPPC can be synthesized in sufficient radiochemical yield, purity, and specific radioactivity and possesses binding specificity in relevant models that indicate potential for human PET imaging of CSF1R and the microglial component of neuroinflammation.


Assuntos
Fator Estimulador de Colônias de Macrófagos/metabolismo , Microglia/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Placa Amiloide/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Primatas , Compostos Radiofarmacêuticos/metabolismo
7.
Glia ; 69(5): 1241-1250, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33400321

RESUMO

Astrocytes are in control of metabolic homeostasis in the brain and support and modulate neuronal function in various ways. Astrocyte-derived l-lactate (lactate) is thought to play a dual role as a metabolic and a signaling molecule in inter-cellular communication. The biological significance of lactate release from astrocytes is poorly understood, largely because the tools to manipulate lactate levels in vivo are limited. We therefore developed new viral vectors for astrocyte-specific expression of a mammalianized version of lactate oxidase (LOx) from Aerococcus viridans. LOx expression in astrocytes in vitro reduced their intracellular lactate levels as well as the release of lactate to the extracellular space. Selective expression of LOx in astrocytes of the dorsal hippocampus in mice resulted in increased locomotor activity in response to novel stimuli. Our findings suggest that a localized decreased intracellular lactate pool in hippocampal astrocytes could contribute to greater responsiveness to environmental novelty. We expect that use of this molecular tool to chronically limit astrocytic lactate release will significantly facilitate future studies into the roles and mechanisms of intercellular lactate communication in the brain.


Assuntos
Astrócitos , Hipocampo , Ácido Láctico , Animais , Camundongos , Neurônios , Oxirredução
8.
Mol Psychiatry ; 25(3): 560-571, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30022042

RESUMO

Mania is a serious neuropsychiatric condition associated with significant morbidity and mortality. Previous studies have suggested that environmental exposures can contribute to mania pathogenesis. We measured dietary exposures in a cohort of individuals with mania and other psychiatric disorders as well as in control individuals without a psychiatric disorder. We found that a history of eating nitrated dry cured meat but not other meat or fish products was strongly and independently associated with current mania (adjusted odds ratio 3.49, 95% confidence interval (CI) 2.24-5.45, p < 8.97 × 10-8). Lower odds of association were found between eating nitrated dry cured meat and other psychiatric disorders. We further found that the feeding of meat preparations with added nitrate to rats resulted in hyperactivity reminiscent of human mania, alterations in brain pathways that have been implicated in human bipolar disorder, and changes in intestinal microbiota. These findings may lead to new methods for preventing mania and for developing novel therapeutic interventions.


Assuntos
Mania/fisiopatologia , Produtos da Carne/efeitos adversos , Nitratos/efeitos adversos , Adulto , Animais , Transtorno Bipolar/etiologia , Transtorno Bipolar/metabolismo , Transtorno Bipolar/fisiopatologia , Encéfalo/fisiopatologia , Feminino , Humanos , Hipercinese/metabolismo , Masculino , Mania/etiologia , Mania/metabolismo , Produtos da Carne/análise , Ratos , Ratos Sprague-Dawley
9.
Int J Eat Disord ; 54(4): 639-645, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33368559

RESUMO

OBJECTIVE: Patients with Anorexia Nervosa (AN) display increased levels of oxidative stress that correlates with disease severity. Unfortunately, the biological ramifications of AN-induced oxidative stress on the brain are largely unknown. Our lab uses the preclinical activity-based anorexia (ABA) paradigm to model symptoms of AN. The goal of the present study was to determine how ABA experience affects oxidative state and its consequences in adolescent female rats. METHOD: We compared systemic glutathione and cysteine plasma concentrations and medial prefrontal cortex (mPFC) mitochondrial fission in ABA animals at maximum weight loss or following 10-days of weight recovery to levels in age-matched sedentary (SED) control rats. RESULTS: ABA animals at maximum weight loss had significantly lower plasma levels of cysteine and glutathione compared to SED controls. Additionally, ABA animals at max weight loss have significantly more mPFC mitochondrial fission. There were no significant differences in plasma analyte levels or mitochondrial fission between weight recovered ABA animals and SED controls. DISCUSSION: These data suggest that ABA experience results in oxidative stress that is remedied after weight restoration. The long-lasting ramifications of transient periods of increased oxidative stress are unknown and can lead to significant consequences on brain function and behavior.


Assuntos
Anorexia Nervosa , Anorexia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Dinâmica Mitocondrial , Estresse Oxidativo , Ratos , Redução de Peso
10.
J Neurosci ; 39(42): 8250-8258, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619494

RESUMO

The recent shift in sociopolitical debates and growing liberalization of cannabis use across the globe has raised concern regarding its impact on vulnerable populations, such as pregnant women and adolescents. Epidemiological studies have long demonstrated a relationship between developmental cannabis exposure and later mental health symptoms. This relationship is especially strong in people with particular genetic polymorphisms, suggesting that cannabis use interacts with genotype to increase mental health risk. Seminal animal research directly linked prenatal and adolescent exposure to delta-9-tetrahydrocannabinol, the major psychoactive component of cannabis, with protracted effects on adult neural systems relevant to psychiatric and substance use disorders. In this article, we discuss some recent advances in understanding the long-term molecular, epigenetic, electrophysiological, and behavioral consequences of prenatal, perinatal, and adolescent exposure to cannabis/delta-9-tetrahydrocannabinol. Insights are provided from both animal and human studies, including in vivo neuroimaging strategies.


Assuntos
Cannabis/efeitos adversos , Cognição/fisiologia , Uso da Maconha/efeitos adversos , Transtornos Mentais/etiologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Adolescente , Animais , Feminino , Humanos , Transtornos Mentais/psicologia , Gravidez
11.
NMR Biomed ; 33(10): e4365, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32627266

RESUMO

PURPOSE: To probe cerebral microstructural abnormalities and assess changes of neuronal density in Disrupted-in-Schizophrenia-1 (DISC1) mice using non-Gaussian diffusion and quantitative susceptibility mapping (QSM). MATERIALS AND METHODS: Brain specimens of transgenic DISC1 mice (n = 8) and control mice (n = 7) were scanned. Metrics of neurite orientation dispersion and density imaging (NODDI) and diffusion kurtosis imaging (DKI), as well as QSM, were acquired. Cell counting was performed on Nissl-stained sections. Group differences of imaging metrics and cell density were assessed. Pearson correlations between imaging metrics and cell densities were also examined. RESULTS: Significant increases of neuronal density were observed in the hippocampus of DISC1 mice. DKI metrics such as mean kurtosis exhibited significant group differences in the caudate putamen (P = 0.015), cerebral cortex (P = 0.021), and hippocampus (P = 0.011). However, DKI metrics did not correlate with cell density. In contrast, significant positive correlation between density of neurons and the neurite density index of NODDI in the hippocampus was observed (r = 0.783, P = 0.007). Significant correlation between density of neurons and susceptibility (r = 0.657, P = 0.039), as well as between density of neuroglia and susceptibility (r = 0.750, P = 0.013), was also observed in the hippocampus. CONCLUSION: The imaging metrics derived from DKI were not sensitive specifically to cell density, while NODDI could provide diffusion metrics sensitive to density of neurons. The magnetic susceptibility values derived from the QSM method can serve as a sensitive biomarker for quantifying neuronal density.


Assuntos
Imagem de Tensor de Difusão , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Contagem de Células , Hipocampo/diagnóstico por imagem , Fenômenos Magnéticos , Camundongos Mutantes , Camundongos Transgênicos
12.
FASEB J ; 33(12): 14734-14747, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31689372

RESUMO

Cytokines and chemokines play diverse roles in different organ systems. Family with sequence similarity 19, member A1-5 (FAM19A1-A5; also known as TAFA1-5) is a group of conserved chemokine-like proteins enriched in the CNS of mice and humans. Their functions are only beginning to emerge. Here, we show that the expression of Fam19a1-a5 in different mouse brain regions are induced or suppressed by unfed and refed states. The striking nutritional regulation of Fam19a family members in the brain suggests a potential central role in regulating metabolism. Using a knockout (KO) mouse model, we show that loss of FAM19A1 results in sexually dimorphic phenotypes. In male mice, FAM19A1 deficiency alters food intake patterns during the light and dark cycle. Fam19a1 KO mice are hyperactive, and locomotor hyperactivity is more pronounced in female KO mice. Behavior tests indicate that Fam19a1 KO female mice have reduced anxiety and sensitivity to pain. Spatial learning and exploration, however, is preserved in Fam19a1 KO mice. Altered behaviors are associated with elevated norepinephrine and dopamine turnover in the striatum. Our results establish an in vivo function of FAM19A1 and highlight central roles for this family of neurokines in modulating animal physiology and behavior.-Lei, X., Liu, L., Terrillion, C. E., Karuppagounder, S. S., Cisternas, P., Lay, M., Martinelli, D. C., Aja, S., Dong, X., Pletnikov, M. V., Wong, G. W. FAM19A1, a brain-enriched and metabolically responsive neurokine, regulates food intake patterns and mouse behaviors.


Assuntos
Quimiocinas/fisiologia , Corpo Estriado/metabolismo , Ingestão de Alimentos , Locomoção , Aprendizagem Espacial , Animais , Células Cultivadas , Quimiocinas/genética , Dopamina/metabolismo , Comportamento Exploratório , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina/metabolismo , Ratos , Fatores Sexuais
13.
Proc Natl Acad Sci U S A ; 114(39): 10479-10484, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28894008

RESUMO

Genome-wide association studies have implicated the ANK3 locus in bipolar disorder, a major human psychotic illness. ANK3 encodes ankyrin-G, which organizes the neuronal axon initial segment (AIS). We generated a mouse model with conditional disruption of ANK3 in pyramidal neurons of the adult forebrain (Ank-G cKO). This resulted in the expected loss of pyramidal neuron AIS voltage-gated sodium and potassium channels. There was also dramatic loss of markers of afferent GABAergic cartridge synapses, resembling the cortical microcircuitry changes in brains from psychotic patients, and suggesting disinhibition. Expression of c-fos was increased in cortical pyramidal neurons, consistent with increased neuronal activity due to disinhibition. The mice showed robust behavioral phenotypes reminiscent of aspects of human mania, ameliorated by antimania drugs lithium and valproate. Repeated social defeat stress resulted in repeated episodes of dramatic behavioral changes from hyperactivity to "depression-like" behavior, suggestive of some aspects of human bipolar disorder. Overall, we suggest that this Ank-G cKO mouse model recapitulates some of the core features of human bipolar disorder and indicates that cortical microcircuitry alterations during adulthood may be involved in pathogenesis. The model may be useful for studying disease pathophysiology and for developing experimental therapeutics.


Assuntos
Anquirinas/genética , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Prosencéfalo/fisiopatologia , Sinapses/patologia , Animais , Transtorno Bipolar/fisiopatologia , Modelos Animais de Doenças , Neurônios GABAérgicos/patologia , Lítio/farmacologia , Metilfenidato/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Proteínas Proto-Oncogênicas c-fyn/biossíntese , Ácido Valproico/farmacologia , Canais de Sódio Disparados por Voltagem/genética
14.
Infect Immun ; 86(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30037790

RESUMO

Anti-NMDA receptor (NMDAR) autoantibodies have been postulated to play a role in the pathogenesis of NMDAR hypofunction, which contributes to the etiology of psychotic symptoms. Toxoplasma gondii is a pathogen implicated in psychiatric disorders and associated with elevation of NMDAR autoantibodies. However, it remains unclear whether parasite infection is the cause of NMDAR autoantibodies. By using mouse models, we found that NMDAR autoantibody generation had a strong temporal association with tissue cyst formation, as determined by MAG1 antibody seroreactivity (r = 0.96; P < 0.0001), which is a serologic marker for the cyst burden. The presence of MAG1 antibody response, but not T. gondii IgG response, was required for NMDAR autoantibody production. The pathogenic relevance of NMDAR autoantibodies to behavioral abnormalities (blunted response to amphetamine-triggered activity and decreased locomotor activity and exploration) and reduced expression of synaptic proteins (the GLUN2B subtype of NMDAR and PSD-95) has been demonstrated in infected mice. Our study suggests that NMDAR autoantibodies are specifically induced by persistent T. gondii infection and are most likely triggered by tissue cysts. NMDAR autoantibody seroreactivity may be a novel pathological hallmark of chronic toxoplasmosis, which raises questions about NMDAR hypofunction and neurodegeneration in the infected brain.


Assuntos
Autoanticorpos/imunologia , Encéfalo/patologia , Receptores de N-Metil-D-Aspartato/imunologia , Toxoplasma/fisiologia , Toxoplasmose/parasitologia , Toxoplasmose/psicologia , Animais , Comportamento Animal , Encéfalo/imunologia , Encéfalo/parasitologia , Encéfalo/fisiopatologia , Doença Crônica , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Atividade Motora , Neuropatologia , Toxoplasmose/imunologia , Toxoplasmose/patologia
15.
Neurobiol Dis ; 103: 144-153, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28392471

RESUMO

In addition to motor function, the cerebellum has been implicated in cognitive and social behaviors. Various structural and functional abnormalities of Purkinje cells (PCs) have been observed in schizophrenia and autism. As PCs express the gene Disrupted-In-Schizophrenia-1 (DISC1), and DISC1 variants have been associated with neurodevelopmental disorders, we evaluated the role of DISC1 in cerebellar physiology and associated behaviors using a mouse model of inducible and selective expression of a dominant-negative, C-terminus truncated human DISC1 (mutant DISC1) in PCs. Mutant DISC1 male mice demonstrated impaired social and novel placement recognition. No group differences were found in novelty-induced hyperactivity, elevated plus maze test, spontaneous alternation, spatial recognition in Y maze, sociability or accelerated rotarod. Expression of mutant DISC1 was associated with a decreased number of large somata PCs (volume: 3000-5000µm3) and an increased number of smaller somata PCs (volume: 750-1000µm3) without affecting the total number of PCs or the volume of the cerebellum. Compared to control mice, attached loose patch recordings of PCs in mutant DISC1 mice revealed increased spontaneous firing of PCs; and whole cell recordings showed increased amplitude and frequency of mEPSCs without significant changes in either Rinput or parallel fiber EPSC paired-pulse ratio. Our findings indicate that mutant DISC1 alters the physiology of PCs, possibly leading to abnormal recognition memory in mice.


Assuntos
Disfunção Cognitiva/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Locomoção/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Células de Purkinje/metabolismo , Comportamento Social , Animais , Disfunção Cognitiva/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética
16.
Proc Natl Acad Sci U S A ; 111(45): 16106-11, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25349393

RESUMO

Chloroviruses (family Phycodnaviridae) are large DNA viruses known to infect certain eukaryotic green algae and have not been previously shown to infect humans or to be part of the human virome. We unexpectedly found sequences homologous to the chlorovirus Acanthocystis turfacea chlorella virus 1 (ATCV-1) in a metagenomic analysis of DNA extracted from human oropharyngeal samples. These samples were obtained by throat swabs of adults without a psychiatric disorder or serious physical illness who were participating in a study that included measures of cognitive functioning. The presence of ATCV-1 DNA was confirmed by quantitative PCR with ATCV-1 DNA being documented in oropharyngeal samples obtained from 40 (43.5%) of 92 individuals. The presence of ATCV-1 DNA was not associated with demographic variables but was associated with a modest but statistically significant decrease in the performance on cognitive assessments of visual processing and visual motor speed. We further explored the effects of ATCV-1 in a mouse model. The inoculation of ATCV-1 into the intestinal tract of 9-11-wk-old mice resulted in a subsequent decrease in performance in several cognitive domains, including ones involving recognition memory and sensory-motor gating. ATCV-1 exposure in mice also resulted in the altered expression of genes within the hippocampus. These genes comprised pathways related to synaptic plasticity, learning, memory formation, and the immune response to viral exposure.


Assuntos
Comportamento Animal , Chlorella/virologia , Cognição , Laringe/virologia , Memória , Mariposas/virologia , Phycodnaviridae , Animais , Feminino , Humanos , Masculino , Camundongos
17.
J Neurosci ; 35(31): 11056-67, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26245967

RESUMO

The inositol hexakisphosphate kinases (IP6Ks) are the principal enzymes that generate inositol pyrophosphates. There are three IP6Ks (IP6K1, 2, and 3). Functions of IP6K1 and IP6K2 have been substantially delineated, but little is known of IP6K3's role in normal physiology, especially in the brain. To elucidate functions of IP6K3, we generated mice with targeted deletion of IP6K3. We demonstrate that IP6K3 is highly concentrated in the brain in cerebellar Purkinje cells. IP6K3 physiologically binds to the cytoskeletal proteins adducin and spectrin, whose mutual interactions are perturbed in IP6K3-null mutants. Consequently, IP6K3 knock-out cerebella manifest abnormalities in Purkinje cell structure and synapse number, and the mutant mice display deficits in motor learning and coordination. Thus, IP6K3 is a major determinant of cytoskeletal disposition and function of cerebellar Purkinje cells. SIGNIFICANCE STATEMENT: We identified and cloned a family of three inositol hexakisphosphate kinases (IP6Ks) that generate the inositol pyrophosphates, most notably 5-diphosphoinositol pentakisphosphate (IP7). Of these, IP6K3 has been least characterized. In the present study we generated IP6K3 knock-out mice and show that IP6K3 is highly expressed in cerebellar Purkinje cells. IP6K3-deleted mice display defects of motor learning and coordination. IP6K3-null mice manifest aberrations of Purkinje cells with a diminished number of synapses. IP6K3 interacts with the cytoskeletal proteins spectrin and adducin whose altered disposition in IP6K3 knock-out mice may mediate phenotypic features of the mutant mice. These findings afford molecular/cytoskeletal mechanisms by which the inositol polyphosphate system impacts brain function.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Células de Purkinje/metabolismo , Espectrina/metabolismo , Sinapses/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Forma Celular/fisiologia , Camundongos , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Células de Purkinje/citologia
18.
J Neurochem ; 138(4): 518-24, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27187935

RESUMO

Disrupted-In-Schizophrenia 1 (DISC1) is a genetic risk factor implicated in major mental disorders that involve disrupted neurodevelopment and synaptic signaling. Glial cells such as astrocytes can regulate neuronal and synaptic maturation. Although astrocytes express DISC1, the role of astrocyte DISC1 in synaptic regulation remains unknown. We expressed a pathogenic, dominant-negative form of DISC1, mutant DISC1, in astrocytes to elucidate the roles of astrocytic DISC1 in maturation of dendrites and excitatory and inhibitory synapses using a co-culture model. We found that wild-type primary neurons exhibited less elaborated dendritic arborization when co-cultured with astrocytes that express mutant DISC1, compared to control astrocytes. We observed significantly decreased density of excitatory but not inhibitory synapses on wild-type primary neurons that were co-cultured with astrocytes that express mutant DISC1, compared to control astrocytes. Treatment of co-cultures with D-serine restored dendritic development and density of excitatory synapses. Our findings show for the first time that mutant DISC1 diminished the capacity of astrocytes to support dendritic and synaptic maturation in co-cultured neurons, and that D-serine can restore the dendritic and synaptic abnormalities. The results provide a new insight into the mechanisms whereby genetic risk factors within astrocytes could contribute the pathogenesis of psychiatric disorders. Expression of mutant DISC1 (mDISC1) in astrocytes (A) decreases binding of endogenous DISC1 to serine racemase (SR) and production of D-serine (blue triangles) from L-serine (red triangles). As a result, neurons co-cultured with mutant DISC1 astrocytes exhibit diminished dendritic arborization (DIV10) and decreased linear density of VGLUT+(red)/PSD95 +  (green) excitatory synapses (DIV14). Filled circles with arrows denote membrane transporters for D-serine. Read the Editorial Highlight for this article on doi: 10.1111/jnc.13699.


Assuntos
Astrócitos/metabolismo , Células Dendríticas/metabolismo , Transtornos Mentais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Sinapses/metabolismo , Animais , Animais Recém-Nascidos , Técnicas de Cocultura , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neuroglia/metabolismo , Técnicas de Patch-Clamp
19.
Neurobiol Dis ; 85: 174-186, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26545928

RESUMO

Translocator protein (18 kDa), formerly known as the peripheral benzodiazepine receptor (PBR), has been extensively used as a biomarker of active brain disease and neuroinflammation. TSPO expression increases dramatically in glial cells, particularly in microglia and astrocytes, as a result of brain injury, and this phenomenon is a component of the hallmark response of the brain to injury. In this study, we used a mouse model of Sandhoff disease (SD) to assess the longitudinal expression of TSPO as a function of disease progression and its relationship to behavioral and neuropathological endpoints. Focusing on the presymptomatic period of the disease, we used ex vivo [(3)H]DPA-713 quantitative autoradiography and in vivo [(125)I]IodoDPA-713 small animal SPECT imaging to show that brain TSPO levels markedly increase prior to physical and behavioral manifestation of disease. We further show that TSPO upregulation coincides with early neuronal GM2 ganglioside aggregation and is associated with ongoing neurodegeneration and activation of both microglia and astrocytes. In brain regions with increased TSPO levels, there is a differential pattern of glial cell activation with astrocytes being activated earlier than microglia during the progression of disease. Immunofluorescent confocal imaging confirmed that TSPO colocalizes with both microglia and astrocyte markers, but the glial source of the TSPO response differs by brain region and age in SD mice. Notably, TSPO colocalization with the astrocyte marker GFAP was greater than with the microglia marker, Mac-1. Taken together, our findings have significant implications for understanding TSPO glial cell biology and for detecting neurodegeneration prior to clinical expression of disease.


Assuntos
Encéfalo/metabolismo , Receptores de GABA/metabolismo , Doença de Sandhoff/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Modelos Animais de Doenças , Progressão da Doença , Gangliosidoses GM2/metabolismo , Estudos Longitudinais , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Atividade Motora/fisiologia , Degeneração Neural/diagnóstico por imagem , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Sintomas Prodrômicos , Doença de Sandhoff/diagnóstico por imagem , Doença de Sandhoff/patologia , Tomografia Computadorizada de Emissão de Fóton Único
20.
Neurobiol Dis ; 91: 307-14, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26969530

RESUMO

BACKGROUND: Toxoplasma gondii is a pathogen implicated in psychiatric disorders. As elevated antibodies to T. gondii are also present in non-symptomatic individuals, we hypothesized that the age during first exposure to the pathogen may affect symptom manifestation. We tested this hypothesis by evaluating neurobehavioral abnormalities and the immune response in mice following adolescent or adult T. gondii infection. METHODS: Mice were infected with T. gondii at postnatal day 33 (adolescent/juvenile) or 61 (adult). At 8weeks post-infection (wpi), pre-pulse inhibition of the acoustic startle (PPI) in mice administered MK-801 (0.1 and 0.3mg/kg) and amphetamine (5 and 10mg/kg) was assessed. Peripheral (anti-T. gondii, C1q-associated IgG and anti-GLUN2 antibodies) and central (C1q and Iba1) markers of the immune response were also evaluated. In addition, regional brain expression of N-methyl-d-aspartate receptor (NMDAR) subunits (GLUN1 and GLUN2A), glutamatergic (vGLUT1, PSD95) and GABAergic (GAD67) markers, and monoamines (DA, NE, 5-HT) and their metabolites were measured. RESULTS: Juvenile and adult infected mice exhibited opposite effects of MK-801 on PPI, with decreased PPI in juveniles and increased PPI in adults. There was a significantly greater elevation of GLUN2 autoantibodies in juvenile-compared to adult-infected mice. In addition, age-dependent differences were found in regional expression of NMDAR subunits and markers of glutamatergic, GABAergic, and monoaminergic systems. Activated microglia and C1q elevations were found in both juvenile- and adult-T. gondii infected mice. CONCLUSIONS: Our study demonstrates that the age at first exposure to T. gondii is an important factor in shaping distinct behavioral and neurobiological abnormalities. Elevation in GLUN2 autoantibodies or complement protein C1q may be a potential underlying mechanism. A better understanding of these age-related differences may lead to more efficient treatments of behavioral disorders associated with T. gondii infection.


Assuntos
Autoanticorpos/imunologia , Encéfalo/patologia , Encéfalo/parasitologia , Transtornos Mentais/patologia , Receptores de N-Metil-D-Aspartato/imunologia , Toxoplasma , Envelhecimento , Animais , Imunoglobulina G/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Toxoplasmose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA