Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(3): e16602, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454738

RESUMO

Terrestrial geothermal ecosystems are hostile habitats, characterized by large emissions of environmentally relevant gases such as CO2 , CH4 , H2 S and H2 . These conditions provide a niche for chemolithoautotrophic microorganisms. Methanotrophs of the phylum Verrucomicrobia, which inhabit these ecosystems, can utilize these gases and grow at pH levels below 1 and temperatures up to 65°C. In contrast, methanotrophs of the phylum Proteobacteria are primarily found in various moderate environments. Previously, novel verrucomicrobial methanotrophs were detected and isolated from the geothermal soil of the Favara Grande on the island of Pantelleria, Italy. The detection of pmoA genes, specific for verrucomicrobial and proteobacterial methanotrophs in this environment, and the partially overlapping pH and temperature growth ranges of these isolates suggest that these distinct phylogenetic groups could coexist in the environment. In this report, we present the isolation and characterization of a thermophilic and acid-tolerant gammaproteobacterial methanotroph (family Methylococcaceae) from the Favara Grande. This isolate grows at pH values ranging from 3.5 to 7.0 and temperatures from 35°C to 55°C, and diazotrophic growth was demonstrated. Its genome contains genes encoding particulate and soluble methane monooxygenases, XoxF- and MxaFI-type methanol dehydrogenases, and all enzymes of the Calvin cycle. For this novel genus and species, we propose the name 'Candidatus Methylocalor cossyra' CH1.


Assuntos
Ecossistema , Solo , Filogenia , Ácidos , Proteobactérias , Gases , Metano , Microbiologia do Solo
2.
Antonie Van Leeuwenhoek ; 117(1): 94, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954064

RESUMO

The Aeolian archipelago is known worldwide for its volcanic activity and hydrothermal emissions, of mainly carbon dioxide and hydrogen sulfide. Hydrogen, methane, and carbon monoxide are minor components of these emissions which together can feed large quantities of bacteria and archaea that do contribute to the removal of these notorious greenhouse gases. Here we analyzed the metagenome of samples taken from the Levante bay on Vulcano Island, Italy. Using a gene-centric approach, the hydrothermal vent community appeared to be dominated by Proteobacteria, and Sulfurimonas was the most abundant genus. Metabolic reconstructions highlight a prominent role of formaldehyde oxidation and the reverse TCA cycle in carbon fixation. [NiFe]-hydrogenases seemed to constitute the preferred strategy to oxidize H2, indicating that besides H2S, H2 could be an essential electron donor in this system. Moreover, the sulfur cycle analysis showed a high abundance and diversity of sulfate reduction genes underpinning the H2S production. This study covers the diversity and metabolic potential of the microbial soil community in Levante bay and adds to our understanding of the biogeochemistry of volcanic ecosystems.


Assuntos
Hidrogênio , Metagenoma , Metano , Microbiologia do Solo , Enxofre , Metano/metabolismo , Hidrogênio/metabolismo , Itália , Enxofre/metabolismo , Archaea/genética , Archaea/classificação , Archaea/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Fontes Hidrotermais/microbiologia , Ilhas , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA