Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Mol Pharm ; 21(6): 2828-2837, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38723178

RESUMO

Nefecon, a targeted-release capsule formulation of budesonide approved for the reduction of proteinuria in adults with primary immunoglobulin A nephropathy, targets overproduction of galactose-deficient immunoglobulin A type 1 in the Peyer's patches at the gut mucosal level. To investigate whether the commercial formulation of Nefecon capsules reliably releases budesonide to the distal ileum, a human study was conducted with test capsules reproducing the delayed-release function of Nefecon capsules. Caffeine was included in the test capsules as a marker for capsule opening in the gut since it appears rapidly in saliva after release from orally administered dosage forms. Magnetic resonance imaging with black iron oxide was used to determine the capsule's position in the gut at the time caffeine was first measured in saliva and additionally to directly visualize dispersion of the capsule contents in the gut. In vitro dissolution results confirmed that the test capsules had the same delayed-release characteristics as Nefecon capsules. In 10 of 12 human volunteers, the capsule was demonstrated to open in the distal ileum; in the other two subjects, it opened just past the ileocecal junction. These results compared favorably with the high degree of variability seen in other published imaging studies of delayed-release formulations targeting the gut. The test capsules were shown to reliably deliver their contents to the distal ileum, the region with the highest concentration of Peyer's patches.


Assuntos
Budesonida , Cápsulas , Sistemas de Liberação de Medicamentos , Íleo , Humanos , Íleo/metabolismo , Íleo/efeitos dos fármacos , Adulto , Sistemas de Liberação de Medicamentos/métodos , Masculino , Budesonida/administração & dosagem , Budesonida/farmacocinética , Budesonida/química , Feminino , Cápsulas/química , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Imageamento por Ressonância Magnética/métodos , Administração Oral , Pessoa de Meia-Idade , Cafeína/química , Cafeína/administração & dosagem , Nódulos Linfáticos Agregados/metabolismo , Nódulos Linfáticos Agregados/efeitos dos fármacos , Adulto Jovem
2.
Mol Pharm ; 21(5): 2065-2080, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38600804

RESUMO

Physiologically based biopharmaceutics modeling (PBBM) is used to elevate drug product quality by providing a more accurate and holistic understanding of how drugs interact with the human body. These models are based on the integration of physiological, pharmacological, and pharmaceutical data to simulate and predict drug behavior in vivo. Effective utilization of PBBM requires a consistent approach to model development, verification, validation, and application. Currently, only one country has a draft guidance document for PBBM, whereas other major regulatory authorities have had limited experience with the review of PBBM. To address this gap, industry submitted confidential PBBM case studies to be reviewed by the regulatory agencies; software companies committed to training. PBBM cases were independently and collaboratively discussed by regulators, and academic colleagues participated in some of the discussions. Successful bioequivalence "safe space" industry case examples are also presented. Overall, six regulatory agencies were involved in the case study exercises, including ANVISA, FDA, Health Canada, MHRA, PMDA, and EMA (experts from Belgium, Germany, Norway, Portugal, Spain, and Sweden), and we believe this is the first time such a collaboration has taken place. The outcomes were presented at this workshop, together with a participant survey on the utility and experience with PBBM submissions, to discuss the best scientific practices for developing, validating, and applying PBBMs. The PBBM case studies enabled industry to receive constructive feedback from global regulators and highlighted clear direction for future PBBM submissions for regulatory consideration.


Assuntos
Biofarmácia , Indústria Farmacêutica , Humanos , Biofarmácia/métodos , Indústria Farmacêutica/métodos , Modelos Biológicos , Equivalência Terapêutica , Preparações Farmacêuticas/química , Estados Unidos
3.
Mol Pharm ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946085

RESUMO

This Article shares the proceedings from the August 29th, 2023 (day 1) workshop "Physiologically Based Biopharmaceutics Modeling (PBBM) Best Practices for Drug Product Quality: Regulatory and Industry Perspectives". The focus of the day was on model parametrization; regulatory authorities from Canada, the USA, Sweden, Belgium, and Norway presented their views on PBBM case studies submitted by industry members of the IQ consortium. The presentations shared key questions raised by regulators during the mock exercise, regarding the PBBM input parameters and their justification. These presentations also shed light on the regulatory assessment processes, content, and format requirements for future PBBM regulatory submissions. In addition, the day 1 breakout presentations and discussions gave the opportunity to share best practices around key questions faced by scientists when parametrizing PBBMs. Key questions included measurement and integration of drug substance solubility for crystalline vs amorphous drugs; impact of excipients on apparent drug solubility/supersaturation; modeling of acid-base reactions at the surface of the dissolving drug; choice of dissolution methods according to the formulation and drug properties with a view to predict the in vivo performance; mechanistic modeling of in vitro product dissolution data to predict in vivo dissolution for various patient populations/species; best practices for characterization of drug precipitation from simple or complex formulations and integration of the data in PBBM; incorporation of drug permeability into PBBM for various routes of uptake and prediction of permeability along the GI tract.

4.
Pharm Res ; 41(6): 1121-1138, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38720034

RESUMO

PURPOSE: The goal was to assess, for lipophilic drugs, the impact of logP on human volume of distribution at steady-state (VDss) predictions, including intermediate fut and Kp values, from six methods: Oie-Tozer, Rodgers-Rowland (tissue-specific Kp and only muscle Kp), GastroPlus, Korzekwa-Nagar, and TCM-New. METHOD: A sensitivity analysis with focus on logP was conducted by keeping pKa and fup constant for each of four drugs, while varying logP. VDss was also calculated for the specific literature logP values. Error prediction analysis was conducted by analyzing prediction errors by source of logP values, drug, and overall values. RESULTS: The Rodgers-Rowland methods were highly sensitive to logP values, followed by GastroPlus and Korzekwa-Nagar. The Oie-Tozer and TCM-New methods were only modestly sensitive to logP. Hence, the relative performance of these methods depended upon the source of logP value. As logP values increased, TCM-New and Oie-Tozer were the most accurate methods. TCM-New was the only method that was accurate regardless of logP value source. Oie-Tozer provided accurate predictions for griseofulvin, posaconazole, and isavuconazole; GastroPlus for itraconazole and isavuconazole; Korzekwa-Nagar for posaconazole; and TCM-New for griseofulvin, posaconazole, and isavuconazole. Both Rodgers-Rowland methods provided inaccurate predictions due to the overprediction of VDss. CONCLUSIONS: TCM-New was the most accurate prediction of human VDss across four drugs and three logP sources, followed by Oie-Tozer. TCM-New showed to be the best method for VDss prediction of highly lipophilic drugs, suggesting BPR as a favorable surrogate for drug partitioning in the tissues, and which avoids the use of fup.


Assuntos
Modelos Biológicos , Humanos , Preparações Farmacêuticas/química , Incerteza , Farmacocinética , Distribuição Tecidual , Triazóis
5.
Pharm Res ; 39(8): 1881-1890, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35672541

RESUMO

PURPOSE: Despite no broad, direct evidence in humans, there is a potential concern that surfactants alter active or passive drug intestinal permeation to modulate oral drug absorption. The purpose of this study was to investigate the impact of the surfactant polysorbate 80 on active and passive intestinal drug absorption in humans. METHODS: The human (n = 12) pharmacokinetics (PK) of three probe substrates of intestinal absorption, valacyclovir, chenodeoxycholic acid (CDCA), and enalaprilat, were assessed. Endogenous bile acid levels were assessed as a secondary measure of transporter and microbiota impact. RESULTS: Polysorbate 80 did not inhibit peptide transporter 1 (PepT1)- or apical sodium bile acid transporter (ASBT)-mediated PK of valacyclovir and CDCA, respectively. Polysorbate 80 did not increase enalaprilat absorption. Modest increases in unconjugated secondary bile acid Cmax ratios suggest a potential alteration of the in vivo intestinal microbiota by polysorbate 80. CONCLUSIONS: Polysorbate 80 did not alter intestinal membrane fluidity or cause intestinal membrane disruption. This finding supports regulatory relief of excipient restrictions for Biopharmaceutics Classification System-based biowaivers.


Assuntos
Enalaprilato , Polissorbatos , Ácidos e Sais Biliares , Enalaprilato/farmacologia , Excipientes/farmacologia , Humanos , Absorção Intestinal , Permeabilidade , Tensoativos/farmacologia , Valaciclovir/farmacologia
6.
Epilepsy Behav ; 128: 108587, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35151189

RESUMO

PURPOSE: In a prior bioequivalence study, generic brittle (GB) patients with epilepsy who were considered at risk of worsened seizures or drug side effects from switching antiepileptic drug (AED) formulations demonstrated no significant difference in their drug levels when switched between a brand and generic AED. An alternative basis for being GB may relate to having a personality or mindset that predisposes to poor outcomes from a formulation switch. The objective of this study was to explore whether GB patients with epilepsy could be differentiated from not GB patients based on standardized measures of personality, mood, outlook, and beliefs. METHODS: This was an exploratory, observational, case-control, non-therapeutic study in patients with epilepsy. Patient interviews were conducted, and histories were collected, yielding each patient (n = 148) to be determined as GB or not GB. Eight neuropsychiatry tests were administered to n = 127 of these patients. Tests included Neuroticism Extraversion Openness Personality Inventory 3 (NEO-PI 3), Life Orientation Test-Revised (LOT-R), Quality of Life in Epilepsy Inventory-89 (QOLIE-89), Adverse Childhood Experiences Score (ACE), Physical Symptoms Questionnaire or Patient Health Questionnaire-15 (PHQ-15), Beck Depression Inventory II (BDI-II), Beck Anxiety Inventory (BAI), and the Beliefs About Medicines Questionnaire Epilepsy (BMQ-Epilepsy). A total of 23 Chi squared analyses, along with logistical regression, were performed to assess which tests and sub-elements associated with GB status. RESULTS: None of the neuropsychiatry tests or their sub-elements differentiated GB patients from not GB patients. Results implicate that standardized measures of personality, mood, outlook, and beliefs about their healthcare do not differ between GB and not GB patients with epilepsy, possibly because generic brittleness is caused by factors that neuropsychiatry tests do not measure. CONCLUSIONS: We hypothesized that being GB may relate to having a personality or mindset that predisposes patients to attributing poor outcomes to a formulation switch. However, findings here in patients with epilepsy did not uncover neuropsychiatric factors that predict which patients were GB and which were not GB.


Assuntos
Epilepsia , Qualidade de Vida , Anticonvulsivantes/efeitos adversos , Medicamentos Genéricos/efeitos adversos , Epilepsia/complicações , Epilepsia/tratamento farmacológico , Epilepsia/psicologia , Extroversão Psicológica , Humanos
7.
Mol Pharm ; 18(4): 1544-1557, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33621099

RESUMO

Complex iron nanoparticle-based drugs are one of the oldest and most frequently administered classes of nanomedicines. In the US, there are seven FDA-approved iron nanoparticle reference drug products, of which one also has an approved generic drug product (i.e., sodium ferric gluconate (SFG)). These products are indicated for the treatment of iron deficiency anemia and are administered intravenously. On the molecular level, iron nanomedicines are colloids composed of an iron oxide core with a carbohydrate coating. This formulation makes nanomedicines more complex than conventional small molecule drugs. As such, these products are often referred to as nonbiological complex drugs (e.g., by the nonbiological complex drugs (NBCD) working group) or complex drug products (e.g., by the FDA). Herein, we report a comprehensive study of the physiochemical properties of the iron nanoparticle product SFG. SFG is the single drug for which both an innovator (Ferrlecit) and generic product are available in the US, allowing for comparative studies to be performed. Measurements focused on the iron core of SFG included optical spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), X-ray powder diffraction (XRPD), 57Fe Mössbauer spectroscopy, and X-ray absorbance spectroscopy (XAS). The analysis revealed similar ferric-iron-oxide structures. Measurements focused on the carbohydrate shell comprised of the gluconate ligands included forced acid degradation, dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and gel permeation chromatography (GPC). Such analysis revealed differences in composition for the innovator versus the generic SFG. These studies have the potential to contribute to future quality assessment of iron complex products and will inform on a pharmacokinetic study of two therapeutically equivalent iron gluconate products.


Assuntos
Medicamentos Genéricos/química , Compostos Férricos/química , Nanopartículas/química , Anemia Ferropriva/tratamento farmacológico , Química Farmacêutica , Cromatografia em Gel , Medicamentos Genéricos/administração & dosagem , Medicamentos Genéricos/farmacocinética , Medicamentos Genéricos/normas , Difusão Dinâmica da Luz , Estudos de Equivalência como Asunto , Compostos Férricos/administração & dosagem , Compostos Férricos/farmacocinética , Compostos Férricos/normas , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/normas , Controle de Qualidade , Ultracentrifugação
8.
Pharm Res ; 38(12): 1991-2001, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34950975

RESUMO

Complex generics are generic versions of drug products that generally have complex active ingredients, complex formulations, complex routes of delivery, complex dosage forms, are complex drug-device combination products, or have other characteristics that can make it complex to demonstrate bioequivalence or to develop as generics. These complex products (i.e. complex generics) are an important element of the United States (U.S.) Food and Drug Administration's (FDA's) Generic Drug User Fee Amendments (GDUFA) II Commitment Letter. The Center for Research on Complex Generics (CRCG) was formed by a grant from the FDA to address challenges associated with the development of complex generics. To understand these challenges, the CRCG conducted a "Survey of Scientific Challenges in the Development of Complex Generics". The three main areas of questioning were directed toward which (types of) complex products, which methods of analysis to support a demonstration of bioequivalence, and which educational topics the CRCG should prioritize. The survey was open to the public on a website maintained by the CRCG. Regarding complex products, the top three selections were complex injectables, formulations, and nanomaterials; drug-device combination products; and inhalation and nasal products. Regarding methods of analysis, the top three selections were locally-acting physiologically-based pharmacokinetic modeling; oral absorption models and bioequivalence; and data analytics and machine learning. Regarding educational topics, the top three selections were complex injectables, formulations, and nanomaterials; drug-device combination products; and data analytics, including quantitative methods and modeling & simulation. These survey results will help prioritize the CRCG's initial research and educational initiatives.


Assuntos
Medicamentos Genéricos , Educação em Farmácia/tendências , Pesquisa Farmacêutica/tendências , Aprovação de Drogas , Educação em Farmácia/estatística & dados numéricos , Pesquisa Farmacêutica/estatística & dados numéricos , Inquéritos e Questionários/estatística & dados numéricos , Equivalência Terapêutica , Estados Unidos , United States Food and Drug Administration
9.
Mol Pharm ; 17(2): 361-372, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31846335

RESUMO

In October 2016, the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) ICH began efforts to provide recommendations to harmonize guidances for biopharmaceutics classification system (BCS)-based biowaivers. Topics to be addressed included consideration of the dose used to classify solubility, tests, and criteria for establishing highly permeable, dissolution conditions, the influence of excipients, and aspects of product strength. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) is a technically focused organization of pharmaceutical and biotechnology companies with a mission of advancing science and technology to augment the capability of member companies to develop transformational solutions that benefit patients, regulators, and the broader R&D community. Its members have substantial expertise in all scientific domains associated with BCS-based waivers and drug product quality, as well as considerable experience in the application of BCS-based biowaivers. The ICH process recognizes that harmonization is achieved through the development of guidelines via a process of scientific consensus with regulatory and industry experts working side-by-side. Thus, to facilitate these efforts and to encourage open and transparent discussion of other perspectives that may exist, IQ offers their perspective on these and related topics.


Assuntos
Biofarmácia/classificação , Química Farmacêutica , Formas de Dosagem , Composição de Medicamentos , Liberação Controlada de Fármacos , Excipientes , Humanos , Concentração de Íons de Hidrogênio , Permeabilidade , Solubilidade , Equivalência Terapêutica , Água/química
10.
Pharm Res ; 37(10): 192, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32914239

RESUMO

PURPOSE: The objective was to characterize hydroxypropyl methylcellulose acetate succinate (HMPCAS) grades L, M, and H to enhance itraconazole (ITZ) release and permeation from spray dried dispersions (SDDs), and to investigate underpinning molecular ITZ-HPMCAS interactions that differentiated grade performance. METHODS: ITZ or its SDDs were subjected to solution stabilization assessment, one-dimensional proton nuclear magnetic resonance (NMR) spectroscopy, saturation transfer difference NMR studies, small volume dissolution, solid state transformation studies, and in vitro dissolution/permeation flux studies. RESULTS: HPMCAS-L was the best performing grade overall and exhibited greatest ITZ supersaturation concentration, small volume dissolution, and in vitro dissolution/permeation flux. Meanwhile, H grade retarded ITZ precipitation to the greatest extent in solution stabilization studies and exhibited greater hydrophobic interaction with ITZ in NMR studies. However, this apparent advantage of H grade through hydrophobic interactions between drug-polymer appeared to limit overall dissolution/permeation performance of SDD. CONCLUSIONS: In vitro SDD studies and drug-polymer interaction studies provided insight into the performance of HPMCAS grades, as well as the relative contributions of various mechanisms that polymer can promote ITZ absorption from SDD.


Assuntos
Itraconazol/química , Metilcelulose/análogos & derivados , Química Farmacêutica , Tecnologia de Fibra Óptica , Cinética , Espectroscopia de Ressonância Magnética , Metilcelulose/química , Solubilidade
11.
Pharm Res ; 37(3): 60, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103380

RESUMO

PURPOSE: A patient was denoted to be generic brittle (GB) if they had a negative opinion about generics (e.g. prior history of a switch problem) or took the innovator brand of their most problematic anti-epileptic drug (AED) when generic was available. The aim of this hypothesis-generating study was to assess possible genetic and physiologic differences between GB and not GB patients with epilepsy. METHODS: Patients (n = 148) with epilepsy were previously characterized as being either GB or not GB. Blood was collected from each subject for genotyping and physiologic testing. Genotyping for 24 single nucleotide polymorphisms (SNPs) and two copy number variants (CNVs) was performed across 12 genes in each patient. Forty-four physiologic tests were conducted in each patient. Chi square analysis was performed to assess for associations between genotyping results and GB status, as well as between physiologic test results and GB status. RESULTS: No SNP or CNV discriminated GB status in genetic analysis (genotype or allele frequency). Physiologic test results in this study were not associated with GB status. CONCLUSIONS: Questions from neurologists and patients about generics is frequently based on applicability of generic drug standards to individual subjects. However, findings here in patients with epilepsy did not uncover genetic or physiologic reasons that explained which patients were GB and which were not GB.


Assuntos
Anticonvulsivantes/uso terapêutico , Medicamentos Genéricos/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Conhecimento do Paciente sobre a Medicação , Anticonvulsivantes/farmacocinética , Comportamento de Escolha , Citocromo P-450 CYP3A/genética , Medicamentos Genéricos/farmacocinética , Frequência do Gene , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Receptores Nicotínicos/genética , Equivalência Terapêutica
12.
Epilepsy Behav ; 105: 106936, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32092462

RESUMO

PURPOSE: The purpose of the study was to assess if any antiepileptic drug (AED) was associated with patients being generic brittle (GB) and if any specific AED caused - and was not merely associated with - more frequent switch problems. METHODS: Chi square and binary logistical regression analysis were performed, using a previously described study in patients with epilepsy who were routinely followed at the University of Maryland epilepsy outpatient clinic in Baltimore, Maryland. Determination of generic brittleness mirrored clinical practice and included patient opinion about generic formulations, usually based on a history of worsened seizures or side effects with prior AED formulation switching. The dataset included a total of 148 patients, who took 30 different AED formulations. Patients collectively took 530 AED formulation products. RESULTS: Taking lamotrigine immediate release (IR) tablets was associated with a greater probability of being GB and tended to cause more frequent switch problems. Interestingly, six AEDs - Vimpat tablet, carbamazepine IR tablet, phenobarbital (any formulation), gabapentin capsule, Lyrica capsules, and phenytoin (any formulation) - were associated with a reduced probability of being GB, although perhaps not through greater efficacy and tolerability, or better formulation quality. Since tablet and capsule appearance may influence patient perceptions and clinical outcomes, it was observed that the six AEDs less associated with being GB also tended to have fewer generics, and hence possibly lessen treatment uncertainties from the patient perspective. A patient taking more AEDs had significantly increased odds of having a switch problem. An additional observation was that, when a generic was available for their most problematic AED, GB patients took a generic AED only 50% of the time, while not GB patients took a generic AED all the time. CONCLUSIONS: Taking lamotrigine IR tablets was associated with a greater probability of being GB and tended to cause more frequent switch problems than other AEDs in this cohort of patients. Six AEDs were associated with a reduced probability of being GB. The lower number of different generics for these six drugs may result in greater patient certainty in medication identity, due to greater consistency in medication color, shape, and size, and hence less generic skepticism or generic brittleness. Also, patients taking more AEDs showed increased odds of a switch problem.


Assuntos
Anticonvulsivantes/efeitos adversos , Substituição de Medicamentos/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Medicamentos Genéricos/efeitos adversos , Epilepsia/tratamento farmacológico , Lamotrigina/efeitos adversos , Adulto , Anticonvulsivantes/uso terapêutico , Estudos de Coortes , Substituição de Medicamentos/tendências , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/fisiopatologia , Medicamentos Genéricos/uso terapêutico , Epilepsia/fisiopatologia , Feminino , Humanos , Lamotrigina/uso terapêutico , Masculino , Pessoa de Meia-Idade
13.
Mol Pharm ; 16(3): 1272-1281, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30676753

RESUMO

Nanomedicines are nanoparticle-based therapeutic or diagnostic agents designed for targeted delivery or enhanced stability. Nanotechnology has been successfully employed to develop various drug formulations with improved pharmacokinetic characteristics, and current research efforts are focused on the development of new innovator and generic nanomedicines. Nanomedicines, which are often denoted as complex or nonbiological complex drugs, have inherently different physicochemical and pharmacokinetic properties than conventional small molecule drugs. The tools necessary to fully evaluate nanomedicines in clinical settings are limited, which can hamper their development. One of the most successful families of nanomedicines are iron-carbohydrate nanoparticles, which are administered intravenously (IV) to treat iron-deficiency anemia. In the U.S., the FDA has approved six distinct iron-carbohydrate nanoparticles but only one generic version (sodium ferric gluconate for Ferrlecit). There is significant interest in approving additional generic iron-carbohydrate drugs; however, the lack of a direct method to monitor the fate of the iron nanoparticles in clinical samples has impeded this approval. Herein we report a novel liquid chromatography-inductively coupled plasma-mass spectrometry (LC-ICP-MS) method that allows for the direct quantification of the iron-carbohydrate drugs in clinical samples, while simultaneously measuring the speciation of the iron released from the nanoparticles in biological samples. To our knowledge, this is the first time that iron nanoparticles have been observed in clinical samples, opening the door for direct pharmacokinetic studies of this family of drugs. This method has potential applications not only for iron-nanoparticle drugs but also for any nanomedicine with an inorganic component.


Assuntos
Cromatografia Líquida/métodos , Compostos Férricos/sangue , Compostos Férricos/química , Ferro/química , Espectrometria de Massas/métodos , Nanopartículas/química , Administração Intravenosa , Confiabilidade dos Dados , Composição de Medicamentos , Medicamentos Genéricos , Compostos Férricos/administração & dosagem , Voluntários Saudáveis , Humanos , Nanomedicina/métodos , Nanotecnologia/métodos , Sensibilidade e Especificidade
14.
Epilepsy Behav ; 90: 197-203, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30579779

RESUMO

PURPOSE: The purpose of this study was to provide an algorithm for generic brittleness and to elucidate the demographic factors that anticipate generic brittleness for patients with epilepsy. METHODS: This exploratory, observational, and nontherapeutic study was conducted in patients with epilepsy who were routinely followed at the University of Maryland epilepsy outpatient clinic in Baltimore, Maryland. Patients were taking at least one antiepileptic drug (AED) for treatment of epilepsy. Based on patient interview and medical history, 12 demographic factors were collected. Each patient was assessed to be either generic brittle (GB) or not GB. Demographic factors were subjected to binary logistical regression and other statistical tests, to elucidate determinants of GB status. RESULTS: N = 148 patients completed the study. An algorithm to define whether a patient was GB or not GB was devised. The two elements that defined GB status are as follows: patient opinion about generics and (if needed) whether patients were currently taking brand or generic of their most problematic AED. About 40% of patients were GB. From binary logistical regression, two demographic factors that contributed to patients being GB were whether a patient was currently taking a problem AED and total number of current medications for a patient, with odds ratios of 4.06 (95% confidence interval [CI] from 1.53 to 10.81) and 1.10 (95% CI from 1.003 to 1.21), respectively. Of the patients on a problem AED, 46.9% were GB, while only 18.2% of patients not currently on a problem AED were GB. The total number of current medications ranged from 1 to 22, with mode of four medications. From regression, for each additional medication that a patient took, the odds of being GB increased 1.10-fold. Although patient seizure and adverse event history was not employed to define GB status, being GB was associated with less seizure control and greater adverse events. CONCLUSIONS: An algorithm for generic brittleness was derived, and about 40% of patients were GB, usually due to prior history of a switch problem. Two demographic factors favored patients being GB: whether the patient was currently taking a problem AED and the total number of current medications.


Assuntos
Anticonvulsivantes/uso terapêutico , Demografia/métodos , Medicamentos Genéricos/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/psicologia , Adulto , Idoso , Substituição de Medicamentos/métodos , Substituição de Medicamentos/psicologia , Epilepsia/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
AAPS PharmSciTech ; 20(8): 331, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677012

RESUMO

Because spray-dried dispersion (SDD) performance depends on polymer selection and drug load, time- and resource-sparing methods to screen drug/polymer combinations before spray drying are desirable. The primary objective was to assess the utility of films to anticipate the effects of drug load and polymer grade on dissolution performance of tablets containing SDDs of itraconazole (ITZ). A secondary objective was to characterize the solid-state attributes of films and SDDs to explain drug load and polymer effects on dissolution performance. SDDs employed three different grades of hypromellose acetate succinate (i.e., either HPMCAS-L, HPMCAS-M, or HPMCAS-H). Solid-state characterization employed differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. Results indicate that films correctly anticipated the effects of drug load and polymer on dissolution performance. The best dissolution profiles were observed under the following conditions: 20% drug loading performed better than 30% for both films and SDDs, and the polymer grade rank order was HPMCAS-L > HPMCAS-M > HPMCAS-H for both films and SDDs. No dissolution was detected from films or SDDs containing HPMCAS-H. Solid-state characterization revealed percent crystallinity and phase miscibility as contributing factors to dissolution, but were not the sole factors. Amorphous content in films varied with drug load (10% > 20% > 30%) and polymer grades (HPMCAS-L > HPMCAS-M > HPMCAS-H), in agreement with dissolution. In conclusion, films anticipated the rank-order effects of drug load and polymer grade on dissolution performance from SDDs of ITZ, in part through percent crystallinity and phase miscibility influences.


Assuntos
Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Itraconazol/síntese química , Itraconazol/metabolismo , Metilcelulose/análogos & derivados , Antifúngicos/síntese química , Antifúngicos/metabolismo , Varredura Diferencial de Calorimetria , Dessecação , Metilcelulose/síntese química , Metilcelulose/metabolismo , Polímeros , Solubilidade , Comprimidos , Difração de Raios X/métodos
16.
Mol Pharm ; 20(11): 5243-5244, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37927294
17.
Mol Pharm ; 15(11): 4827-4834, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30247920

RESUMO

Our work has focused on defining the utility of fluorine (19F)-labeled bile acid analogues and magnetic resonance imaging (MRI) to identify altered bile acid transport in vivo. In the current study, we explored the ability of this approach to differentiate fibroblast growth factor-15 (FGF15)-deficient from wild-type (WT) mice, a potential diagnostic test for bile acid diarrhea, a commonly misdiagnosed disorder. FGF15 is the murine homologue of human FGF19, an intestinal hormone whose deficiency is an underappreciated cause of bile acid diarrhea. In a pilot and three subsequent pharmacokinetic studies, we treated mice with two 19F-labeled bile acid analogues, CA-lys-TFA and CA-sar-TFMA. After oral dosing, we quantified 19F-labeled bile acid analogue levels in the gallbladder, liver, small and large intestine, and plasma using liquid chromatography mass spectrometry (LC-MS/MS). Both 19F bile acid analogues concentrated in the gallbladders of FGF15-deficient and WT mice, attaining peak concentrations at approximately 8.5 h after oral dosing. However, analogue levels in gallbladders of FGF15-deficient mice were several-fold less compared to those in WT mice. Live-animal 19F MRI provided agreement with our LC-MS/MS-based measures; we detected robust CA-lys-TFA 19F signals in gallbladders of WT mice but no signals in FGF15-deficient mice. Our finding that 19F MRI differentiates FGF15-deficient from WT mice provides additional proof-of-concept for the development of 19F bile acid analogues and 19F MRI as a clinical test to diagnose bile acid diarrhea due to FGF19 deficiency and other disorders.


Assuntos
Ácidos e Sais Biliares/farmacocinética , Diarreia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Sondas Moleculares/farmacocinética , Animais , Ácidos e Sais Biliares/administração & dosagem , Ácidos e Sais Biliares/química , Diarreia/genética , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Flúor/química , Vesícula Biliar/diagnóstico por imagem , Vesícula Biliar/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sondas Moleculares/administração & dosagem , Sondas Moleculares/química , Distribuição Tecidual
18.
Pharm Res ; 35(11): 204, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30191328

RESUMO

PURPOSE: The organic cation transporters (OCTs) and multidrug and toxin extrusions (MATEs), located in the basolateral and apical membrane of proximal tubular cells respectively, are crucial determinants of renal elimination and/or toxicity of cationic drugs such as cisplatin. The purpose of this study was to discover selective OCT inhibitors over MATEs, and explore their potential to protect against cisplatin-induced nephrotoxicity that is clinically common. METHODS: The inhibition by select compounds on the uptake of the probe substrate metformin was assessed in HEK293 cells overexpressing human OCT2, OCT1, MATE1, MATE2-K, and mouse Oct2, Oct1, and Mate1. Furthermore, the effects of carvedilol on organic cation transporter-mediated cellular and renal accumulation of metformin and cisplatin, and particularly the toxicity associated with cisplatin, were investigated in HEK293 cells and mice. RESULTS: Five selective OCT inhibitors were identified through the screening of forty-one drugs previously reported as the inhibitors of OCTs and/or MATEs. Among them, carvedilol showed the most selectivity on OCTs over MATEs (IC50: 3.6 µM for human OCT2, 103 µM for human MATE1 and 202 µM for human MATE2-K) in the cellular assays in vitro, with the selectivity in mice as well. Moreover, carvedilol treatment could significantly decrease cisplatin accumulation and ameliorate its toxicity both in vitro in cells and in vivo in mouse kidney. CONCLUSIONS: Our data indicate that selective inhibition of OCTs by carvedilol may protect from cisplatin-induced nephrotoxicity by restraining the cellular entry of cisplatin via OCTs, while having no impact on its elimination through MATEs.


Assuntos
Antineoplásicos/toxicidade , Carvedilol/farmacologia , Cisplatino/toxicidade , Nefropatias/tratamento farmacológico , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Substâncias Protetoras/farmacologia , Animais , Carvedilol/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Rim/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Masculino , Metformina/metabolismo , Camundongos Endogâmicos C57BL , Substâncias Protetoras/uso terapêutico
19.
Pharm Res ; 35(1): 14, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29302757

RESUMO

PURPOSE: Lamivudine, a characterized substrate for human multidrug and toxin extrusion protein 1 (hMATE1) in vitro, was commonly used with indinavir as a therapy against human immunodeficiency virus (HIV). We aimed to investigate whether mouse MATE1 is involved in the disposition of lamivudine in vivo, and whether there is any transporter-mediated interaction between indinavir and lamivudine. METHODS: The role of MATE1 in the disposition of lamivudine was determined using Mate1 wild type (+/+) and knockout (-/-) mice. The inhibitory potencies of indinavir on lamivudine uptake mediated by OCT2 and MATE1 were determined in human embryonic kidney 293 (HEK 293) cells stably expressing these transporters. The role of MATE1 in the interaction between indinavir and lamivudine in vivo was determined using Mate1 (+/+) and Mate1 (-/-) mice. RESULTS: The plasma concentrations and tissue accumulation of lamivudine were markedly elevated in Mate1 (-/-) mice as compared to those in Mate1 (+/+) mice. Indinavir significantly increased the pharmacokinetic exposure of lamivudine in mice; however, the effect by indinavir was significantly less pronounced in Mate1 (-/-) mice as compared to Mate1(+/+) mice. CONCLUSION: MATE1 played an important role in lamivudine pharmacokinetics. Indinavir could cause drug-drug interaction with lamivudine in vivo via inhibition of MATE1 and additional mechanism.


Assuntos
HIV-1/efeitos dos fármacos , Indinavir/química , Lamivudina/química , Lamivudina/farmacocinética , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacocinética , Transporte Biológico/efeitos dos fármacos , Técnicas de Cultura de Células , Interações Medicamentosas , Células HEK293 , Humanos , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Tecidual
20.
Pharm Res ; 35(12): 243, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361780

RESUMO

PURPOSE: The organic cation transporters (OCTs) and multidrug and toxin extrusions (MATEs) together are regarded as an organic cation transport system critical to the disposition and response of many organic cationic drugs. Patient response to the analgesic morphine, a characterized substrate for human OCT1, is highly variable. This study was aimed to examine whether there is any organic cation transporter-mediated drug and drug interaction (DDI) between morphine and commonly co-administrated drugs. METHODS: The uptake of morphine and its inhibition by six drugs which are commonly co-administered with morphine in the clinic were assessed in human embryonic kidney 293 (HEK293) cells stably expressing OCT1, OCT2 and MATE1. The in vivo interaction between morphine and the select irinotecan was determined by comparing the disposition of morphine in the absence versus presence of irinotecan treatment in mice. RESULTS: The uptake of morphine in the stable HEK293 cells expressing human OCT1 and OCT2 was significantly increased by 3.56 and 3.04 fold, respectively, than that in the control cells, with no significant uptake increase in the cells expressing human MATE1. All of the six drugs examined, including amitriptyline, fluoxetine, imipramine, irinotecan, ondansetron, and verapamil, were inhibitors of OCT1/2-mediated morphine uptake. The select irinotecan significantly increased the plasma concentrations and decreased hepatic and renal accumulation of morphine in mice. CONCLUSIONS: Morphine is a substrate of OCT1 and OCT2. Clinician should be aware that the disposition of and thus the response to morphine may be altered by co-administration of an OCT1/2 inhibitor, such as irinotecan.


Assuntos
Irinotecano/metabolismo , Morfina/metabolismo , Entorpecentes/metabolismo , Transportador 1 de Cátions Orgânicos/antagonistas & inibidores , Transportador 2 de Cátion Orgânico/antagonistas & inibidores , Amitriptilina/metabolismo , Amitriptilina/farmacologia , Animais , Interações Medicamentosas , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Células HEK293 , Humanos , Imipramina/metabolismo , Imipramina/farmacologia , Irinotecano/farmacologia , Camundongos Endogâmicos C57BL , Ondansetron/metabolismo , Ondansetron/farmacologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Distribuição Tecidual , Verapamil/metabolismo , Verapamil/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA