Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Cell ; 81(10): 2059-2060, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34019786

RESUMO

Using a barcoded reporter introduced within a thousand different chromatin locations in human cells, (Schep et al., 2021) characterize repair outcomes of Cas9-induced DNA double-strand breaks (DSBs) and the relative use of DSB repair pathways depending on the local chromatin context.


Assuntos
Cromatina , Quebras de DNA de Cadeia Dupla , Sistemas CRISPR-Cas , Cromatina/genética , DNA , Reparo do DNA , Humanos
2.
Cell ; 155(1): 94-106, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24074863

RESUMO

Understanding how to recover fully functional and transcriptionally active chromatin when its integrity has been challenged by genotoxic stress is a critical issue. Here, by investigating how chromatin dynamics regulate transcriptional activity in response to DNA damage in human cells, we identify a pathway involving the histone chaperone histone regulator A (HIRA) to promote transcription restart after UVC damage. Our mechanistic studies reveal that HIRA accumulates at sites of UVC irradiation upon detection of DNA damage prior to repair and deposits newly synthesized H3.3 histones. This local action of HIRA depends on ubiquitylation events associated with damage recognition. Furthermore, we demonstrate that the early and transient function of HIRA in response to DNA damage primes chromatin for later reactivation of transcription. We propose that HIRA-dependent histone deposition serves as a chromatin bookmarking system to facilitate transcription recovery after genotoxic stress.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina , Dano ao DNA/efeitos da radiação , Chaperonas de Histonas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Reparo do DNA , Células HeLa , Histonas/metabolismo , Humanos , Ubiquitinação , Raios Ultravioleta
3.
Mol Cell ; 72(5): 888-901.e7, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30344095

RESUMO

Safeguarding cell function and identity following a genotoxic stress challenge entails a tight coordination of DNA damage signaling and repair with chromatin maintenance. How this coordination is achieved and with what impact on chromatin integrity remains elusive. Here, we address these questions by investigating the mechanisms governing the distribution in mammalian chromatin of the histone variant H2A.X, a central player in damage signaling. We reveal that H2A.X is deposited de novo at sites of DNA damage in a repair-coupled manner, whereas the H2A.Z variant is evicted, thus reshaping the chromatin landscape at repair sites. Our mechanistic studies further identify the histone chaperone FACT (facilitates chromatin transcription) as responsible for the deposition of newly synthesized H2A.X. Functionally, we demonstrate that FACT potentiates H2A.X-dependent signaling of DNA damage. We propose that new H2A.X deposition in chromatin reflects DNA damage experience and may help tailor DNA damage signaling to repair progression.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/genética , DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Histonas/genética , Fatores de Elongação da Transcrição/genética , Alfa-Amanitina/farmacologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , DNA/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Morfolinas/farmacologia , Células NIH 3T3 , Nucleossomos/química , Nucleossomos/efeitos dos fármacos , Nucleossomos/metabolismo , Venenos/farmacologia , Pirimidinas/farmacologia , Pironas/farmacologia , Transdução de Sinais , Fatores de Elongação da Transcrição/metabolismo
4.
Nucleic Acids Res ; 52(5): 2372-2388, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38214234

RESUMO

Pediatric high-grade gliomas (pHGG) are devastating and incurable brain tumors with recurrent mutations in histone H3.3. These mutations promote oncogenesis by dysregulating gene expression through alterations of histone modifications. We identify aberrant DNA repair as an independent mechanism, which fosters genome instability in H3.3 mutant pHGG, and opens new therapeutic options. The two most frequent H3.3 mutations in pHGG, K27M and G34R, drive aberrant repair of replication-associated damage by non-homologous end joining (NHEJ). Aberrant NHEJ is mediated by the DNA repair enzyme polynucleotide kinase 3'-phosphatase (PNKP), which shows increased association with mutant H3.3 at damaged replication forks. PNKP sustains the proliferation of cells bearing H3.3 mutations, thus conferring a molecular vulnerability, specific to mutant cells, with potential for therapeutic targeting.


Assuntos
Neoplasias Encefálicas , Glioma , Histonas , Criança , Humanos , Neoplasias Encefálicas/patologia , Reparo do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Glioma/patologia , Histonas/genética , Histonas/metabolismo , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética
5.
Mol Cell ; 66(1): 3-4, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388440

RESUMO

In this issue of Molecular Cell, Taneja et al. (2017) uncover a dual role for the conserved chromatin remodeler Fft3 in the maintenance of silent heterochromatin and the suppression of replication barriers at euchromatic loci through controlled histone turnover.


Assuntos
Histonas/genética , Proteínas de Schizosaccharomyces pombe/genética , Cromatina , Heterocromatina , Schizosaccharomyces/genética
6.
Trends Biochem Sci ; 45(3): 177-179, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31882194

RESUMO

DNA double-strand breaks (DSBs) elicit major chromatin changes. Using super-resolution microscopy in human cells, Ochs et al. unveil that the DSB response protein 53BP1 and its effector RIF1 organize DSB-flanking chromatin into circular micro-domains. These structures control the spatial distribution of DSB repair factors safeguarding genome integrity.


Assuntos
Cromatina , Reparo do DNA , Quebras de DNA de Cadeia Dupla , Humanos
7.
Mol Cell ; 62(5): 712-27, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27259203

RESUMO

Organism viability relies on the stable maintenance of specific chromatin landscapes, established during development, that shape cell functions and identities by driving distinct gene expression programs. Yet epigenome maintenance is challenged during transcription, replication, and repair of DNA damage, all of which elicit dynamic changes in chromatin organization. Here, we review recent advances that have shed light on the specialized mechanisms contributing to the restoration of epigenome structure and function after DNA damage in the mammalian cell nucleus. By drawing a parallel with epigenome maintenance during replication, we explore emerging concepts and highlight open issues in this rapidly growing field. In particular, we present our current knowledge of molecular players that support the coordinated maintenance of genome and epigenome integrity in response to DNA damage, and we highlight how nuclear organization impacts genome stability. Finally, we discuss possible functional implications of epigenome plasticity in response to genotoxic stress.


Assuntos
Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Dano ao DNA , Reparo do DNA , DNA/genética , Epigênese Genética , Animais , Núcleo Celular/ultraestrutura , Plasticidade Celular , DNA/biossíntese , DNA/química , Metilação de DNA , Replicação do DNA , Epigenômica/métodos , Instabilidade Genômica , Genótipo , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Conformação de Ácido Nucleico , Fenótipo , Transcrição Gênica
8.
Mol Cell ; 64(1): 65-78, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27642047

RESUMO

Chromatin integrity is critical for cell function and identity but is challenged by DNA damage. To understand how chromatin architecture and the information that it conveys are preserved or altered following genotoxic stress, we established a system for real-time tracking of parental histones, which characterize the pre-damage chromatin state. Focusing on histone H3 dynamics after local UVC irradiation in human cells, we demonstrate that parental histones rapidly redistribute around damaged regions by a dual mechanism combining chromatin opening and histone mobilization on chromatin. Importantly, parental histones almost entirely recover and mix with new histones in repairing chromatin. Our data further define a close coordination of parental histone dynamics with DNA repair progression through the damage sensor DDB2 (DNA damage-binding protein 2). We speculate that this mechanism may contribute to maintaining a memory of the original chromatin landscape and may help preserve epigenome stability in response to DNA damage.


Assuntos
Cromatina/efeitos da radiação , Reparo do DNA , Imunofluorescência/métodos , Histonas/genética , Osteoblastos/efeitos da radiação , Linhagem Celular Tumoral , Cromatina/química , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/antagonistas & inibidores , Histonas/metabolismo , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Raios Ultravioleta
9.
Semin Cell Dev Biol ; 113: 75-87, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32690375

RESUMO

DNA damage challenges both genome integrity and its organization with histone proteins into chromatin, with prominent alterations in histone variant dynamics and histone modifications. While these alterations jeopardize epigenome stability, they are also instrumental for an efficient and timely response to DNA damage. Here, we review recent findings illustrating how histone variants and post-translational modifications actively contribute to and control the DNA damage response. We present accumulating evidence that histone protein changes help relieve the chromatin barrier to DNA repair by regulating chromatin compaction and mobility. We also highlight how histone modifications and variants control transcriptional silencing at damage sites, and we describe both pre-existing and DNA damage-induced chromatin features that govern DNA damage signaling and guide DNA repair pathway choice. We discuss how histone dynamics ultimately participate to the restoration of epigenome integrity and present our current knowledge of key molecular players involved in these critical processes.


Assuntos
Cromatina/metabolismo , Dano ao DNA/genética , Histonas/metabolismo , Humanos
10.
Cell Mol Life Sci ; 77(24): 5189-5205, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31900622

RESUMO

Transmission of extracellular signals by G protein-coupled receptors typically relies on a cascade of intracellular events initiated by the activation of heterotrimeric G proteins or ß-arrestins followed by effector activation/inhibition. Here, we report an alternative signal transduction mode used by the orphan GPR50 that relies on the nuclear translocation of its carboxyl-terminal domain (CTD). Activation of the calcium-dependent calpain protease cleaves off the CTD from the transmembrane-bound GPR50 core domain between Phe-408 and Ser-409 as determined by MALDI-TOF-mass spectrometry. The cytosolic CTD then translocates into the nucleus assisted by its 'DPD' motif, where it interacts with the general transcription factor TFII-I to regulate c-fos gene transcription. RNA-Seq analysis indicates a broad role of the CTD in modulating gene transcription with ~ 8000 differentially expressed genes. Our study describes a non-canonical, direct signaling mode of GPCRs to the nucleus with similarities to other receptor families such as the NOTCH receptor.


Assuntos
Proteínas do Tecido Nervoso/genética , Transporte Proteico/genética , Receptores Acoplados a Proteínas G/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Ligação Proteica/genética , Receptores Notch , Transdução de Sinais/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Mol Cell ; 46(6): 722-34, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22749398

RESUMO

The view of DNA packaging into chromatin as a mere obstacle to DNA repair is evolving. In this review, we focus on histone variants and heterochromatin proteins as chromatin components involved in distinct levels of chromatin organization to integrate them as real players in the DNA damage response (DDR). Based on recent data, we highlight how some of these chromatin components play active roles in the DDR and contribute to the fine-tuning of damage signaling, DNA and chromatin repair. To take into account this integrated view, we revisit the existing access-repair-restore model and propose a new working model involving priming chromatin for repair and restoration as a concerted process. We discuss how this impacts on both genomic and epigenomic stability and plasticity.


Assuntos
Cromatina/metabolismo , DNA/metabolismo , Animais , Dano ao DNA , Reparo do DNA , Genoma , Histonas/metabolismo , Humanos , Modelos Biológicos
12.
Mol Cell ; 45(4): 505-16, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22365830

RESUMO

DNA double-strand break (DSB) signaling and repair are critical for cell viability, and rely on highly coordinated pathways whose molecular organization is still incompletely understood. Here, we show that heterogeneous nuclear ribonucleoprotein U-like (hnRNPUL) proteins 1 and 2 play key roles in cellular responses to DSBs. We identify human hnRNPUL1 and -2 as binding partners for the DSB sensor complex MRE11-RAD50-NBS1 (MRN) and demonstrate that hnRNPUL1 and -2 are recruited to DNA damage in an interdependent manner that requires MRN. Moreover, we show that hnRNPUL1 and -2 stimulate DNA-end resection and promote ATR-dependent signaling and DSB repair by homologous recombination, thereby contributing to cell survival upon exposure to DSB-inducing agents. Finally, we establish that hnRNPUL1 and -2 function downstream of MRN and CtBP-interacting protein (CtIP) to promote recruitment of the BLM helicase to DNA breaks. Collectively, these results provide insights into how mammalian cells respond to DSBs.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Ribonucleoproteínas Nucleares Heterogêneas/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Hidrolases Anidrido Ácido , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Chromosoma ; 127(3): 291-300, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29594515

RESUMO

Eukaryotic genomes are organized into chromatin, divided into structurally and functionally distinct euchromatin and heterochromatin compartments. The high level of compaction and the abundance of repeated sequences in heterochromatin pose multiple challenges for the maintenance of genome stability. Cells have evolved sophisticated and highly controlled mechanisms to overcome these constraints. Here, we summarize recent findings on how the heterochromatic state influences DNA damage formation, signaling, and repair. By focusing on distinct heterochromatin domains in different eukaryotic species, we highlight the heterochromatin contribution to the compartmentalization of DNA damage repair in the cell nucleus and to the repair pathway choice. We also describe the diverse chromatin alterations associated with the DNA damage response in heterochromatin domains and present our current understanding of their regulatory mechanisms. Finally, we discuss the biological significance and the evolutionary conservation of these processes.


Assuntos
Dano ao DNA , Heterocromatina/genética , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Reparo do DNA , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Transdução de Sinais
14.
Genes Dev ; 25(5): 409-33, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21363960

RESUMO

Genome integrity is constantly monitored by sophisticated cellular networks, collectively termed the DNA damage response (DDR). A common feature of DDR proteins is their mobilization in response to genotoxic stress. Here, we outline how the development of various complementary methodologies has provided valuable insights into the spatiotemporal dynamics of DDR protein assembly/disassembly at sites of DNA strand breaks in eukaryotic cells. Considerable advances have also been made in understanding the underlying molecular mechanisms for these events, with post-translational modifications of DDR factors being shown to play prominent roles in controlling the formation of foci in response to DNA-damaging agents. We review these regulatory mechanisms and discuss their biological significance to the DDR.


Assuntos
Quebras de DNA , Reparo do DNA/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Animais , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Saccharomyces/genética , Saccharomyces/metabolismo , Transdução de Sinais
15.
Exp Cell Res ; 329(1): 148-53, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25062983

RESUMO

DNA damage interferes with the progression of transcription machineries. A tight coordination of transcription with signaling and repair of DNA damage is thus critical for safeguarding genome function. This coordination involves modulations of chromatin organization. Here, we focus on the central role of chromatin dynamics, in conjunction with DNA Damage Response (DDR) factors, in controlling transcription inhibition and restart at sites of DNA damage in mammalian cells. Recent work has identified chromatin modifiers and histone chaperones as key regulators of transcriptional activity in damaged chromatin regions. Conversely, the transcriptional state of chromatin before DNA damage influences both DNA damage signaling and repair. We discuss the importance of chromatin plasticity in coordinating the interplay between the DDR and transcription, with major implications for cell fate maintenance.


Assuntos
Cromatina/genética , Dano ao DNA/genética , Reparo do DNA/genética , Transcrição Gênica , Animais , Estruturas Cromossômicas , Humanos
16.
Nature ; 462(7275): 935-9, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20016603

RESUMO

DNA double-strand breaks (DSBs) are highly cytotoxic lesions that are generated by ionizing radiation and various DNA-damaging chemicals. Following DSB formation, cells activate the DNA-damage response (DDR) protein kinases ATM, ATR and DNA-PK (also known as PRKDC). These then trigger histone H2AX (also known as H2AFX) phosphorylation and the accumulation of proteins such as MDC1, 53BP1 (also known as TP53BP1), BRCA1, CtIP (also known as RBBP8), RNF8 and RNF168/RIDDLIN into ionizing radiation-induced foci (IRIF) that amplify DSB signalling and promote DSB repair. Attachment of small ubiquitin-related modifier (SUMO) to target proteins controls diverse cellular functions. Here, we show that SUMO1, SUMO2 and SUMO3 accumulate at DSB sites in mammalian cells, with SUMO1 and SUMO2/3 accrual requiring the E3 ligase enzymes PIAS4 and PIAS1. We also establish that PIAS1 and PIAS4 are recruited to damage sites via mechanisms requiring their SAP domains, and are needed for the productive association of 53BP1, BRCA1 and RNF168 with such regions. Furthermore, we show that PIAS1 and PIAS4 promote DSB repair and confer ionizing radiation resistance. Finally, we establish that PIAS1 and PIAS4 are required for effective ubiquitin-adduct formation mediated by RNF8, RNF168 and BRCA1 at sites of DNA damage. These findings thus identify PIAS1 and PIAS4 as components of the DDR and reveal how protein recruitment to DSB sites is controlled by coordinated SUMOylation and ubiquitylation.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Proteína BRCA1/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Fosforilação , Proteínas Inibidoras de STAT Ativados/química , Proteínas Inibidoras de STAT Ativados/genética , Estrutura Terciária de Proteína , Proteína de Replicação A/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
17.
EMBO J ; 29(18): 3130-9, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20693977

RESUMO

The chromatin remodelling factor chromodomain helicase DNA-binding protein 4 (CHD4) is a catalytic subunit of the NuRD transcriptional repressor complex. Here, we reveal novel functions for CHD4 in the DNA-damage response (DDR) and cell-cycle control. We show that CHD4 mediates rapid poly(ADP-ribose)-dependent recruitment of the NuRD complex to DNA-damage sites, and we identify CHD4 as a phosphorylation target for the apical DDR kinase ataxia-telangiectasia mutated. Functionally, we show that CHD4 promotes repair of DNA double-strand breaks and cell survival after DNA damage. In addition, we show that CHD4 acts as an important regulator of the G1/S cell-cycle transition by controlling p53 deacetylation. These results provide new insights into how the chromatin remodelling complex NuRD contributes to maintaining genome stability.


Assuntos
Autoantígenos/metabolismo , Ciclo Celular/fisiologia , Montagem e Desmontagem da Cromatina , Dano ao DNA , DNA Helicases/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Autoantígenos/genética , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Imunofluorescência , Histonas/fisiologia , Humanos , Imunoprecipitação , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Camundongos , Camundongos Knockout , Fosforilação , Poli Adenosina Difosfato Ribose/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
18.
19.
DNA Repair (Amst) ; 140: 103702, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878564

RESUMO

The maintenance of genome integrity by DNA damage response machineries is key to protect cells against pathological development. In cell nuclei, these genome maintenance machineries operate in the context of chromatin, where the DNA wraps around histone proteins. Here, we review recent findings illustrating how the chromatin substrate modulates genome maintenance mechanisms, focusing on the regulatory role of histone variants and post-translational modifications. In particular, we discuss how the pre-existing chromatin landscape impacts DNA damage formation and guides DNA repair pathway choice, and how DNA damage-induced chromatin alterations control DNA damage signaling and repair, and DNA damage segregation through cell divisions. We also highlight that pathological alterations of histone proteins may trigger genome instability by impairing chromosome segregation and DNA repair, thus defining new oncogenic mechanisms and opening up therapeutic options.


Assuntos
Cromatina , Dano ao DNA , Reparo do DNA , Instabilidade Genômica , Histonas , Processamento de Proteína Pós-Traducional , Humanos , Cromatina/metabolismo , Histonas/metabolismo , Animais , Segregação de Cromossomos
20.
Nat Struct Mol Biol ; 31(3): 523-535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38238586

RESUMO

Histone chaperones control nucleosome density and chromatin structure. In yeast, the H3-H4 chaperone Spt2 controls histone deposition at active genes but its roles in metazoan chromatin structure and organismal physiology are not known. Here we identify the Caenorhabditis elegans ortholog of SPT2 (CeSPT-2) and show that its ability to bind histones H3-H4 is important for germline development and transgenerational epigenetic gene silencing, and that spt-2 null mutants display signatures of a global stress response. Genome-wide profiling showed that CeSPT-2 binds to a range of highly expressed genes, and we find that spt-2 mutants have increased chromatin accessibility at a subset of these loci. We also show that SPT2 influences chromatin structure and controls the levels of soluble and chromatin-bound H3.3 in human cells. Our work reveals roles for SPT2 in controlling chromatin structure and function in Metazoa.


Assuntos
Proteínas de Ligação a DNA , Chaperonas de Histonas , Animais , Humanos , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Cromatina/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA