RESUMO
BACKGROUND: Resistance against artemisinin-based combination therapy is one of the challenges to malaria control and elimination globally. Mutations in different genes (Pfdhfr, Pfdhps, Pfk-13 and Pfmdr1) confer resistance to artesunate and sulfadoxine-pyrimethamine (AS + SP) were analysed from Mandla district, Madhya Pradesh, to assess the effectiveness of the current treatment regimen against uncomplicated Plasmodium falciparum. METHODS: Dried blood spots were collected during the active fever survey and mass screening and treatment activities as part of the Malaria Elimination Demonstration Project (MEDP) from 2019 to 2020. Isolated DNA samples were used to amplify the Pfdhfr, Pfdhps, Pfk13 and Pfmdr1 genes using nested PCR and sequenced for mutation analysis using the Sanger sequencing method. RESULTS: A total of 393 samples were subjected to PCR amplification, sequencing and sequence analysis; 199, 215, 235, and 141 samples were successfully sequenced for Pfdhfr, Pfdhps, Pfk13, Pfmdr1, respectively. Analysis revealed that the 53.3% double mutation (C59R, S108N) in Pfdhfr, 89.3% single mutation (G437A) in Pfdhps, 13.5% single mutants (N86Y), and 51.1% synonymous mutations in Pfmdr1 in the study area. Five different non-synonymous and two synonymous point mutations found in Pfk13, which were not associated to artemisinin resistance. CONCLUSION: The study has found that mutations linked to SP resistance are increasing in frequency, which may reduce the effectiveness of this drug as a future partner in artemisinin-based combinations. No evidence of mutations linked to artemisinin resistance in Pfk13 was found, suggesting that parasites are sensitive to artemisinin derivatives in the study area. These findings are a baseline for routine molecular surveillance to proactively identify the emergence and spread of artemisinin-resistant parasites.
Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Humanos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária/tratamento farmacológico , Biomarcadores , Resistência a Medicamentos/genética , Índia , Combinação de Medicamentos , Malária Falciparum/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêuticoRESUMO
BACKGROUND: Mass screening and treatment (MSaT) aims at reducing the spread of malaria in communities by identifying and treating infected persons regardless of the symptoms. This study was conducted to identify and treat asymptomatic cases using MSaT approaches in the community. METHODS: Three rounds of MSaT using cluster combination approaches were carried out during September 2018 to December 2019 to identify and treat asymptomatic malaria cases in the community. All individuals who were present in the household were screened using RDT irrespective of malaria related symptoms. Simultaneously thick and thin blood smear and blood spot were collected for further analysis using microscopy and diagnostic PCR done in a subset of the samples. RESULTS: Logistic regression analysis revealed that asymptomatic malaria cases significantly less among the older age groups compared with < 5 years children (OR ranged between 0.52 and 0.61; p < 0.05), lowest in cluster 4 (OR = 0.01; p < 0.0001); during third round of MSaT survey (OR = 0.11; p < 0.0001) and significantly higher in moderate to high endemic areas (OR = 88.30; p < 0.0001). CONCLUSION: Over the three rounds of MSaT, the number of asymptomatic cases were significantly less in the older age groups, and during third round. Similarly, the asymptomatic cases were significantly less in the low endemic area with API < 1 (cluster four). Therefore, the malaria elimination programme may consider the MSaT strategy to identify asymptomatic cases that would be otherwise missed by routine fever based surveillance. This MSaT strategy would help accomplish the malaria elimination goal in an expedited manner.
Assuntos
Malária Falciparum , Malária , Criança , Humanos , Idoso , Malária Falciparum/epidemiologia , Plasmodium falciparum , Malária/diagnóstico , Malária/tratamento farmacológico , Malária/prevenção & controle , Programas de Rastreamento , Reação em Cadeia da Polimerase , Infecções Assintomáticas/epidemiologia , PrevalênciaRESUMO
BACKGROUND: In India, there are several malaria-endemic regions where non-falciparum species coexist with Plasmodium falciparum. Traditionally, microscopy and rapid diagnostic tests are used for the diagnosis of malaria. Nevertheless, microscopy often misses the secondary malaria parasite in mixed-infection cases due to various constraints. Misdiagnosis/misinterpretation of Plasmodium species leads to improper treatment, as the treatment for P. falciparum and Plasmodium vivax species is different, as per the national vector-borne disease control program in India. METHODS: Blood samples were collected from malaria-endemic regions (Jharkhand, Madhya Pradesh, Chhattisgarh, Maharashtra, Odisha, Assam, Meghalaya, Mizoram and Telangana) of India covering almost the entire country. Molecular diagnosis of Plasmodium species was carried out among microscopically confirmed P. falciparum samples collected during a therapeutic efficacy study in different years. RESULTS: The polymerase chain reaction analysis revealed a high prevalence (18%) of mixed malaria parasite infections among microscopically confirmed P. falciparum samples from malaria patients that are either missed or left out by microscopy. CONCLUSIONS: Deployment of molecular tools in areas of mixed species infection may prove vital for accurate diagnosis and treatment of malaria. Further, it will help in achieving the goal of malaria elimination in India.