Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Gels ; 9(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38131971

RESUMO

Polydimethylsiloxane (PDMS) organogel sponges were prepared and studied in order to understand the role of pore size in an elastomeric network on the ability to uptake and release organic solvents. PDMS organogel sponges have been produced according to sugar leaching techniques by adding two sugar templates of different forms and grain sizes (a sugar cube template and a powdered sugar template), in order to obtain materials differing in porosity, pore size distribution, and solvent absorption and liquid retention capability. These materials were compared to PDMS organogel slabs that do not contain pores. The sponges were characterized by Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and compared with PDMS slabs that do not contain pores. Scanning electron microscopy (SEM) provided information about their morphology. X-ray micro-tomography (XMT) allowed us to ascertain how the form of the sugar templating agent influences the porosity of the systems: when templated with sugar cubes, the porosity was 77% and the mean size of the pores was ca. 300 µm; when templated with powdered sugar, the porosity decreased to ca. 10% and the mean pore size was reduced to ca. 75 µm. These materials, porous organic polymers (POPs), can absorb many solvents in different proportions as a function of their polarity. Absorption capacity, as measured by swelling with eight solvents covering a wide range of polarities, was investigated. Rheology data established that solvent absorption did not have an appreciable impact on the gel-like properties of the sponges, suggesting their potential for applications in cultural heritage conservation. Application tests were conducted on the surfaces of two different lab mock-ups that simulate real painted works of art. They demonstrated further that PDMS sponges are a potential innovative support for controlled and selective cleaning of works of art surfaces.

2.
Sci Rep ; 12(1): 6975, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484192

RESUMO

An innovative protocol for the consolidation of ancient bone remains based on the use of nanometric HydroxyAPatite (HAP) was set up and tested through a multidisciplinary approach. A new protocol for the synthesis of HAP nanoparticles was developed, and the composition of the obtained nanomaterial was investigated through Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD); sizes, shape and morphology of the synthesized particles were studied by Scanning Electron Microscopy (SEM). The consolidation performance was evaluated by testing the new nanomaterial on degraded ancient bone findings. An increase of the mineral density and of the micro-hardness of the bone were observed. The new consolidation method was also tested to assess possible effects on the palaeogenetic analysis and radiocarbon dating on the treated bones. The consolidation treatment does not introduce any contaminations that could affect radiocarbon dating and has no general detrimental impact on the genetic characterization of the skeletal remains. This consolidation procedure represents a more compatible conservation tool with respect to traditional procedures: it has been shown that the treatment is effective, easily-applicable and compatible with post-consolidation analysis.


Assuntos
Nanopartículas , Nanoestruturas , Osso e Ossos , Durapatita/química , Nanopartículas/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA