Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 289(52): 35781-94, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25378395

RESUMO

Fragmentation of amyloid fibrils produces fibrils that are reduced in length but have an otherwise unchanged molecular architecture. The resultant nanoscale fibril particles inhibit the cellular reduction of the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), a substrate commonly used to measure cell viability, to a greater extent than unfragmented fibrils. Here we show that the internalization of ß2-microglobulin (ß2m) amyloid fibrils is dependent on fibril length, with fragmented fibrils being more efficiently internalized by cells. Correspondingly, inhibiting the internalization of fragmented ß2m fibrils rescued cellular MTT reduction. Incubation of cells with fragmented ß2m fibrils did not, however, cause cell death. Instead, fragmented ß2m fibrils accumulate in lysosomes, alter the trafficking of lysosomal membrane proteins, and inhibit the degradation of a model protein substrate by lysosomes. These findings suggest that nanoscale fibrils formed early during amyloid assembly reactions or by the fragmentation of longer fibrils could play a role in amyloid disease by disrupting protein degradation by lysosomes and trafficking in the endolysosomal pathway.


Assuntos
Amiloide/fisiologia , Lisossomos/metabolismo , Proteólise , Microglobulina beta-2/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Nanopartículas/metabolismo , Oxirredução , Permeabilidade , Transporte Proteico
2.
J Biol Chem ; 285(52): 41100-12, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20959458

RESUMO

Regulators of G protein signaling (RGS) proteins of the R7 subfamily limit signaling by neurotransmitters in the brain and by light in the retina. They form obligate complexes with the Gß5 protein that are subject to proteolysis to control their abundance and alter signaling. The mechanisms that regulate this proteolysis, however, remain unclear. We used genetic screens to find mutations in Gß5 that selectively destabilize one of the R7 RGS proteins in Caenorhabditis elegans. These mutations cluster at the binding interface between Gß5 and the N terminus of R7 RGS proteins. Equivalent mutations within mammalian Gß5 allowed the interface to still bind the N-terminal DEP domain of R7 RGS proteins, and mutant Gß5-R7 RGS complexes initially formed in cells but were then rapidly degraded by proteolysis. Molecular dynamics simulations suggest the mutations weaken the Gß5-DEP interface, thus promoting dynamic opening of the complex to expose determinants of proteolysis known to exist on the DEP domain. We propose that conformational rearrangements at the Gß5-DEP interface are key to controlling the stability of R7 RGS protein complexes.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/química , Simulação por Computador , Subunidades beta da Proteína de Ligação ao GTP/química , Modelos Moleculares , Proteínas RGS/química , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Complexos Multiproteicos , Mutação , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas RGS/genética , Proteínas RGS/metabolismo
3.
PLoS One ; 9(6): e98900, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24910990

RESUMO

Natural killer (NK) cell secretory lysosome exocytosis and cytotoxicity are impaired in familial hemophagocytic lymphohistiocytosis type 4 (FHL-4), a disorder caused by mutations in the gene encoding the SNARE protein syntaxin 11. We show that syntaxin 11 binds to SNAP23 in NK cells and that this interaction is reduced by FHL-4 truncation and frameshift mutation proteins that delete all or part of the SNARE domain of syntaxin 11. In contrast the FHL-4 mutant proteins bound to the Sec-1/Munc18-like (SM) protein Munc18-2. We demonstrate that the C-terminal cysteine rich region of syntaxin 11, which is deleted in the FHL-4 mutants, is S-acylated. This posttranslational modification is required for the membrane association of syntaxin 11 and for its polarization to the immunological synapse in NK cells conjugated to target cells. Moreover, we show that Munc18-2 is recruited by syntaxin 11 to intracellular membranes in resting NK cells and to the immunological synapse in activated NK cells. This recruitment of Munc18-2 is abolished by deletion of the C-terminal cysteine rich region of syntaxin 11. These results suggest a pivotal role for S-acylation in the function of syntaxin 11 in NK cells.


Assuntos
Células Matadoras Naturais/citologia , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/imunologia , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/metabolismo , Acilação , Sequência de Bases , Cisteína/metabolismo , Células HeLa , Humanos , Sinapses Imunológicas , Membranas Intracelulares/metabolismo , Células Matadoras Naturais/metabolismo , Linfo-Histiocitose Hemofagocítica/metabolismo , Proteínas Mutantes/genética , Proteínas Qa-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo
4.
PLoS One ; 6(11): e27353, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22096558

RESUMO

The formation of insoluble amyloid fibrils is associated with an array of devastating human diseases. Dialysis-related amyloidosis (DRA) is a severe complication of hemodialysis that results in the progressive destruction of the bones and joints. Elevated concentrations of ß(2)-microglobulin (ß(2)m) in the serum of subjects on hemodialysis promote the formation of amyloid fibrils in the osteoarticular tissues, but the cellular basis for the destruction of these tissues in DRA is poorly understood. In this study we performed a systematic analysis of the interaction of monomeric and fibrillar ß(2)m with primary human cells of the types present in the synovial joints of subjects with DRA. Building upon observations that macrophages infiltrate ß(2)m amyloid deposits in vivo we demonstrate that monocytes, the precursors of macrophages, cannot degrade ß(2)m fibrils, and that both monomeric ß(2)m and fibrillar ß(2)m are cytotoxic to these cells. ß(2)m fibrils also impair the formation of bone resorbing osteoclasts from monocytes and reduce the viability of osteoblasts, the cell type that produces bone. As a consequence, we predict that ß(2)m amyloid will disrupt the remodelling of the bone, which is critical for the maintenance of this tissue. Moreover, we show that ß(2)m fibrils reduce the viability of chondrocytes, rationalizing the loss of cartilage in DRA. Together, our observations demonstrate that ß(2)m cytotoxicity has multiple cellular targets in the osteoarticular tissues and is likely to be a key factor in the bone and joint destruction characteristic of DRA.


Assuntos
Amiloidose/metabolismo , Microglobulina beta-2/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Humanos , Immunoblotting , Leucócitos Mononucleares/citologia , Microscopia Eletrônica de Transmissão , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Microglobulina beta-2/química
5.
Mol Biol Cell ; 21(2): 232-43, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19923320

RESUMO

Regulator of G protein signaling (RGS) proteins inhibit G protein signaling by activating Galpha GTPase activity, but the mechanisms that regulate RGS activity are not well understood. The mammalian R7 binding protein (R7BP) can interact with all members of the R7 family of RGS proteins, and palmitoylation of R7BP can target R7 RGS proteins to the plasma membrane in cultured cells. However, whether endogenous R7 RGS proteins in neurons require R7BP or membrane localization for function remains unclear. We have identified and knocked out the only apparent R7BP homolog in Caenorhabditis elegans, RSBP-1. Genetic studies show that loss of RSBP-1 phenocopies loss of the R7 RGS protein EAT-16, but does not disrupt function of the related R7 RGS protein EGL-10. Biochemical analyses find that EAT-16 coimmunoprecipitates with RSBP-1 and is predominantly plasma membrane-associated, whereas EGL-10 does not coimmunoprecipitate with RSBP-1 and is not predominantly membrane-associated. Mutating the conserved membrane-targeting sequence in RSBP-1 disrupts both the membrane association and function of EAT-16, demonstrating that membrane targeting by RSBP-1 is essential for EAT-16 activity. Our analysis of endogenous R7 RGS proteins in C. elegans neurons reveals key differences in the functional requirements for membrane targeting between members of this protein family.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Proteínas RGS/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Imunoprecipitação , Locomoção , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Músculos/metabolismo , Mutação/genética , Sistema Nervoso/metabolismo , Ovulação , Transporte Proteico , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo , Transgenes/genética
6.
Prog Mol Biol Transl Sci ; 86: 15-47, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20374712

RESUMO

The nematode worm, Caenorhabditis elegans, contains orthologs of most regulator of G protein signaling (RGS) protein subfamilies and all four G protein α-subunit subfamilies found in mammals. Every C. elegans RGS and Gα gene has been knocked out, and the in vivo functions and Gα targets of a number of RGS proteins have been characterized in detail. This has revealed a complex relationship between the RGS and Gα proteins, in which multiple RGS proteins can regulate the same Gα protein, either by acting redundantly or by exerting control over signaling under different circumstances or in different cells. RGS proteins that are coexpressed can also show specificity for distinct Gα targets in vivo, and the determinants of such specificity can reside outside of the RGS domain. This review will discuss how analysis in C. elegans may aid us in achieving a full understanding of the physiological functions of RGS proteins.


Assuntos
Caenorhabditis elegans/metabolismo , Proteínas RGS/metabolismo , Animais , Caenorhabditis elegans/genética , Humanos , Modelos Biológicos , Proteínas RGS/genética , Transdução de Sinais
7.
J Neurosci Res ; 79(6): 836-48, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15672447

RESUMO

Infantile neuronal ceroid lipofuscinosis (INCL; Batten disease) is a severe neurodegenerative disorder of childhood characterized by the accumulation of autofluorescent storage material in lysosomes. It is caused by mutation of the CLN1/PPT1 gene, which encodes the lysosomal enzyme palmitoyl protein thioesterase-1 (PPT1), but the mechanism of disease pathogenesis and substrates for the enzyme are unknown. Caenorhabditis elegans is a simple nematode worm, with a fully sequenced genome, which is easy to maintain and manipulate. It has a completely mapped cell lineage and nervous system and has already provided clues about the pathogenesis of several human neuronal and lysosomal storage disorders. We have identified and characterized a PPT1 homologue in C. elegans. We found that, although this gene was not essential for the animal's survival, its mutation resulted in a mild developmental and reproductive phenotype, affected the number and size of mitochondria, and resulted in an abnormality in mitochondrial morphology, possibly suggestive of a role for this organelle in INCL pathogenesis. This strain, deleted for ppt-1, potentially provides a model system for the study of PPT1 and the pathogenesis of INCL.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Tioléster Hidrolases/metabolismo , Fatores Etários , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados/fisiologia , Northern Blotting/métodos , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestrutura , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Contagem de Células , Tamanho Celular , Biologia Computacional/métodos , Humanos , Microscopia Eletrônica de Transmissão/métodos , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Mutação , Neurônios/patologia , Neurônios/ultraestrutura , Fenótipo , RNA Mensageiro/metabolismo , Reprodução/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Alinhamento de Sequência , Análise de Sequência de DNA/métodos , Homologia de Sequência , Tioléster Hidrolases/química , Tioléster Hidrolases/genética , beta-Galactosidase/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA