Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Acta Neuropathol ; 147(1): 73, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641715

RESUMO

The most prominent genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a repeat expansion in the gene C9orf72. Importantly, the transcriptomic consequences of the C9orf72 repeat expansion remain largely unclear. Here, we used short-read RNA sequencing (RNAseq) to profile the cerebellar transcriptome, detecting alterations in patients with a C9orf72 repeat expansion. We focused on the cerebellum, since key C9orf72-related pathologies are abundant in this neuroanatomical region, yet TDP-43 pathology and neuronal loss are minimal. Consistent with previous work, we showed a reduction in the expression of the C9orf72 gene and an elevation in homeobox genes, when comparing patients with the expansion to both patients without the C9orf72 repeat expansion and control subjects. Interestingly, we identified more than 1000 alternative splicing events, including 4 in genes previously associated with ALS and/or FTLD. We also found an increase of cryptic splicing in C9orf72 patients compared to patients without the expansion and controls. Furthermore, we demonstrated that the expression level of select RNA-binding proteins is associated with cryptic splice junction inclusion. Overall, this study explores the presence of widespread transcriptomic changes in the cerebellum, a region not confounded by severe neurodegeneration, in post-mortem tissue from C9orf72 patients.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Cerebelo , Degeneração Lobar Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Cerebelo/patologia , Expansão das Repetições de DNA/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Perfilação da Expressão Gênica , Transcriptoma
2.
Brain ; 145(7): 2472-2485, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34918030

RESUMO

Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is a complex heterogeneous neurodegenerative disorder for which mechanisms are poorly understood. To explore transcriptional changes underlying FTLD-TDP, we performed RNA-sequencing on 66 genetically unexplained FTLD-TDP patients, 24 FTLD-TDP patients with GRN mutations and 24 control participants. Using principal component analysis, hierarchical clustering, differential expression and coexpression network analyses, we showed that GRN mutation carriers and FTLD-TDP-A patients without a known mutation shared a common transcriptional signature that is independent of GRN loss-of-function. After combining both groups, differential expression as compared to the control group and coexpression analyses revealed alteration of processes related to immune response, synaptic transmission, RNA metabolism, angiogenesis and vesicle-mediated transport. Deconvolution of the data highlighted strong cellular alterations that were similar in FTLD-TDP-A and GRN mutation carriers with NSF as a potentially important player in both groups. We propose several potentially druggable pathways such as the GABAergic, GDNF and sphingolipid pathways. Our findings underline new disease mechanisms and strongly suggest that affected pathways in GRN mutation carriers extend beyond GRN and contribute to genetically unexplained forms of FTLD-TDP-A.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Progranulinas , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mutação , Progranulinas/genética , Progranulinas/metabolismo , Transcriptoma
3.
Mycoses ; 65(1): 88-96, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34726802

RESUMO

BACKGROUND: Cryptococcus neoformans and Cryptococcus gattii species complexes are pathogens causing cryptococcal meningitis, a fungal infection that leads to death unless treated. Worldwide, it is estimated to kill over 180,000 individuals annually. OBJECTIVES: We aim to investigate the molecular diversity of C. gattii isolates from strains isolated from 1995 to the present day from different continents. METHOD: In this study, we analysed the molecular diversity by MLST and antifungal susceptibility by using the broth microdilution method according to the CLSI M27-A4 protocol of a total of 26 strains from Cryptococcus gattii species complex from both clinical and environmental sources. RESULTS: Genotyping showed that most of the strains (17/26; 65.4%) belonged to serotype B and were distributed between three genotypes: VGI (13/17; 76.5%), VGII (3/17; 17.6%) and VGVI (1/17; 5.9%). The serotype C strains (9/26; 34.6%) were distributed between the VGIII (1/9; 11.1%) and VGIV (8/9; 88.9%) genotypes. The 26 strains belonged to 17 different MLST subtypes, and we highlight four new MLST genotypes (ST553, 554, 555 and 556). The two environmental strains were identified as serotype B and genotype VGI, but were of ST 51 and 154. All isolates have wild-type MIC of fluconazole and flucytosine. Regarding amphotericin B, five VGI strains showed MICs to AMB equal to 1 µg/ml, and according to the ECV for these genotypes, they were considered non-wild-type strains. CONCLUSIONS: The current study reveals the genetic diversity and new sequence types among strains from the C. gattii complex species.


Assuntos
Criptococose , Cryptococcus gattii , Criptococose/epidemiologia , Criptococose/microbiologia , Cryptococcus gattii/classificação , Cryptococcus gattii/genética , Fluconazol/farmacologia , Flucitosina/farmacologia , Genótipo , Humanos , Tipagem de Sequências Multilocus , Técnicas de Tipagem Micológica
4.
Acta Neuropathol ; 137(6): 879-899, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30739198

RESUMO

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole-genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (p value = 4.82e - 08, OR = 2.12), and two known loci: UNC13A, led by rs1297319 (p value = 1.27e - 08, OR = 1.50) and HLA-DQA2 led by rs17219281 (p value = 3.22e - 08, OR = 1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole-genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n ≥ 3) as compared to controls (n = 0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g., DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis.


Assuntos
Proteínas do Tecido Nervoso/genética , Proteinopatias TDP-43/genética , Idoso , Expansão das Repetições de DNA , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Feminino , Lobo Frontal/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/imunologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Antígenos HLA-DQ/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio/genética , Progranulinas/genética , Progranulinas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas/genética , Proteínas/fisiologia , RNA Mensageiro/biossíntese , Fatores de Risco , Análise de Sequência de RNA , Sociedades Científicas , Proteinopatias TDP-43/imunologia , População Branca/genética
5.
BMC Bioinformatics ; 19(1): 139, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661148

RESUMO

BACKGROUND: After decades of identifying risk factors using array-based genome-wide association studies (GWAS), genetic research of complex diseases has shifted to sequencing-based rare variants discovery. This requires large sample sizes for statistical power and has brought up questions about whether the current variant calling practices are adequate for large cohorts. It is well-known that there are discrepancies between variants called by different pipelines, and that using a single pipeline always misses true variants exclusively identifiable by other pipelines. Nonetheless, it is common practice today to call variants by one pipeline due to computational cost and assume that false negative calls are a small percent of total. RESULTS: We analyzed 10,000 exomes from the Alzheimer's Disease Sequencing Project (ADSP) using multiple analytic pipelines consisting of different read aligners and variant calling strategies. We compared variants identified by using two aligners in 50,100, 200, 500, 1000, and 1952 samples; and compared variants identified by adding single-sample genotyping to the default multi-sample joint genotyping in 50,100, 500, 2000, 5000 and 10,000 samples. We found that using a single pipeline missed increasing numbers of high-quality variants correlated with sample sizes. By combining two read aligners and two variant calling strategies, we rescued 30% of pass-QC variants at sample size of 2000, and 56% at 10,000 samples. The rescued variants had higher proportions of low frequency (minor allele frequency [MAF] 1-5%) and rare (MAF < 1%) variants, which are the very type of variants of interest. In 660 Alzheimer's disease cases with earlier onset ages of ≤65, 4 out of 13 (31%) previously-published rare pathogenic and protective mutations in APP, PSEN1, and PSEN2 genes were undetected by the default one-pipeline approach but recovered by the multi-pipeline approach. CONCLUSIONS: Identification of the complete variant set from sequencing data is the prerequisite of genetic association analyses. The current analytic practice of calling genetic variants from sequencing data using a single bioinformatics pipeline is no longer adequate with the increasingly large projects. The number and percentage of quality variants that passed quality filters but are missed by the one-pipeline approach rapidly increased with sample size.


Assuntos
Biologia Computacional/métodos , Variação Genética , Doença de Alzheimer/genética , Composição de Bases/genética , Descoberta de Drogas , Genoma , Genótipo , Técnicas de Genotipagem , Humanos , Tamanho da Amostra , Alinhamento de Sequência
6.
J Neurochem ; 138 Suppl 1: 32-53, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27009575

RESUMO

Frontotemporal lobar degeneration (FTLD) comprises a highly heterogeneous group of disorders clinically associated with behavioral and personality changes, language impairment, and deficits in executive functioning, and pathologically associated with degeneration of frontal and temporal lobes. Some patients present with motor symptoms including amyotrophic lateral sclerosis. Genetic research over the past two decades in FTLD families led to the identification of three common FTLD genes (microtubule-associated protein tau, progranulin, and chromosome 9 open reading frame 72) and a small number of rare FTLD genes, explaining the disease in almost all autosomal dominant FTLD families but only a minority of apparently sporadic patients or patients in whom the family history is less clear. Identification of additional FTLD (risk) genes is therefore highly anticipated, especially with the emerging use of next-generation sequencing. Common variants in the transmembrane protein 106 B were identified as a genetic risk factor of FTLD and disease modifier in patients with known mutations. This review summarizes for each FTLD gene what we know about the type and frequency of mutations, their associated clinical and pathological features, and potential disease mechanisms. We also provide an overview of emerging disease pathways encompassing multiple FTLD genes. We further discuss how FTLD specific issues, such as disease heterogeneity, the presence of an unclear family history and the possible role of an oligogenic basis of FTLD, can pose challenges for future FTLD gene identification and risk assessment of specific variants. Finally, we highlight emerging clinical, genetic, and translational research opportunities that lie ahead. Genetic research led to the identification of three common FTLD genes with rare variants (MAPT, GRN, and C9orf72) and a small number of rare genes. Efforts are now ongoing, which aimed at the identification of rare variants with high risk and/or low frequency variants with intermediate effect. Common risk variants have also been identified, such as TMEM106B. This review discusses the current knowledge on FTLD genes and the emerging disease pathways encompassing multiple FTLD genes.


Assuntos
Degeneração Lobar Frontotemporal/genética , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72 , Degeneração Lobar Frontotemporal/psicologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Progranulinas , Proteínas/genética , Fatores de Risco , Proteínas tau/genética
7.
Acta Neuropathol ; 130(1): 77-92, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25943890

RESUMO

Frontotemporal lobar degeneration with TAR DNA-binding protein 43 inclusions (FTLD-TDP) is the most common pathology associated with frontotemporal dementia (FTD). Repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) and mutations in progranulin (GRN) are the major known genetic causes of FTLD-TDP; however, the genetic etiology in the majority of FTLD-TDP remains unexplained. In this study, we performed whole-genome sequencing in 104 pathologically confirmed FTLD-TDP patients from the Mayo Clinic brain bank negative for C9ORF72 and GRN mutations and report on the contribution of rare single nucleotide and copy number variants in 21 known neurodegenerative disease genes. Interestingly, we identified 5 patients (4.8 %) with variants in optineurin (OPTN) and TANK-binding kinase 1 (TBK1) that are predicted to be highly pathogenic, including two double mutants. Case A was a compound heterozygote for mutations in OPTN, carrying the p.Q235* nonsense and p.A481V missense mutation in trans, while case B carried a deletion of OPTN exons 13-15 (p.Gly538Glufs*27) and a loss-of-function mutation (p.Arg117*) in TBK1. Cases C-E carried heterozygous missense mutations in TBK1, including the p.Glu696Lys mutation which was previously reported in two amyotrophic lateral sclerosis (ALS) patients and is located in the OPTN binding domain. Quantitative mRNA expression and protein analysis in cerebellar tissue showed a striking reduction of OPTN and/or TBK1 expression in 4 out of 5 patients supporting pathogenicity in these specific patients and suggesting a loss-of-function disease mechanism. Importantly, neuropathologic examination showed FTLD-TDP type A in the absence of motor neuron disease in 3 pathogenic mutation carriers. In conclusion, we highlight TBK1 as an important cause of pure FTLD-TDP, identify the first OPTN mutations in FTLD-TDP, and suggest a potential oligogenic basis for at least a subset of FTLD-TDP patients. Our data further add to the growing body of evidence linking ALS and FTD and suggest a key role for the OPTN/TBK1 pathway in these diseases.


Assuntos
Degeneração Lobar Frontotemporal/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Fator de Transcrição TFIIIA/genética , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ciclo Celular , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Proteínas de Membrana Transportadoras , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Fator de Transcrição TFIIIA/metabolismo
8.
Brain ; 136(Pt 11): 3395-407, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24065723

RESUMO

Idiopathic basal ganglia calcification is characterized by mineral deposits in the brain, an autosomal dominant pattern of inheritance in most cases and genetic heterogeneity. The first causal genes, SLC20A2 and PDGFRB, have recently been reported. Diagnosing idiopathic basal ganglia calcification necessitates the exclusion of other causes, including calcification related to normal ageing, for which no normative data exist. Our objectives were to diagnose accurately and then describe the clinical and radiological characteristics of idiopathic basal ganglia calcification. First, calcifications were evaluated using a visual rating scale on the computerized tomography scans of 600 consecutively hospitalized unselected controls. We determined an age-specific threshold in these control computerized tomography scans as the value of the 99th percentile of the total calcification score within three age categories: <40, 40-60, and >60 years. To study the phenotype of the disease, patients with basal ganglia calcification were recruited from several medical centres. Calcifications that rated below the age-specific threshold using the same scale were excluded, as were patients with differential diagnoses of idiopathic basal ganglia calcification, after an extensive aetiological assessment. Sanger sequencing of SLC20A2 and PDGFRB was performed. In total, 72 patients were diagnosed with idiopathic basal ganglia calcification, 25 of whom bore a mutation in either SLC20A2 (two families, four sporadic cases) or PDGFRB (one family, two sporadic cases). Five mutations were novel. Seventy-one per cent of the patients with idiopathic basal ganglia calcification were symptomatic (mean age of clinical onset: 39 ± 20 years; mean age at last evaluation: 55 ± 19 years). Among them, the most frequent signs were: cognitive impairment (58.8%), psychiatric symptoms (56.9%) and movement disorders (54.9%). Few clinical differences appeared between SLC20A2 and PDGFRB mutation carriers. Radiological analysis revealed that the total calcification scores correlated positively with age in controls and patients, but increased more rapidly with age in patients. The expected total calcification score was greater in SLC20A2 than PDGFRB mutation carriers, beyond the effect of the age alone. No patient with a PDGFRB mutation exhibited a cortical or a vermis calcification. The total calcification score was more severe in symptomatic versus asymptomatic individuals. We provide the first phenotypical description of a case series of patients with idiopathic basal ganglia calcification since the identification of the first causative genes. Clinical and radiological diversity is confirmed, whatever the genetic status. Quantification of calcification is correlated with the symptomatic status, but the location and the severity of the calcifications don't reflect the whole clinical diversity. Other biomarkers may be helpful in better predicting clinical expression.


Assuntos
Doenças dos Gânglios da Base , Calcinose , Doenças Neurodegenerativas , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças dos Gânglios da Base/diagnóstico por imagem , Doenças dos Gânglios da Base/genética , Doenças dos Gânglios da Base/fisiopatologia , Calcinose/diagnóstico por imagem , Calcinose/genética , Calcinose/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Linhagem , Fenótipo , Método Simples-Cego , Tomografia Computadorizada por Raios X/métodos , Adulto Jovem
9.
medRxiv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38978643

RESUMO

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) is a fatal neurodegenerative disorder with only a limited number of risk loci identified. We report our comprehensive genome-wide association study as part of the International FTLD-TDP Whole-Genome Sequencing Consortium, including 985 cases and 3,153 controls, and meta-analysis with the Dementia-seq cohort, compiled from 26 institutions/brain banks in the United States, Europe and Australia. We confirm UNC13A as the strongest overall FTLD-TDP risk factor and identify TNIP1 as a novel FTLD-TDP risk factor. In subgroup analyses, we further identify for the first time genome-wide significant loci specific to each of the three main FTLD-TDP pathological subtypes (A, B and C), as well as enrichment of risk loci in distinct tissues, brain regions, and neuronal subtypes, suggesting distinct disease aetiologies in each of the subtypes. Rare variant analysis confirmed TBK1 and identified VIPR1 , RBPJL , and L3MBTL1 as novel subtype specific FTLD-TDP risk genes, further highlighting the role of innate and adaptive immunity and notch signalling pathway in FTLD-TDP, with potential diagnostic and novel therapeutic implications.

10.
JAMA Neurol ; 81(6): 619-629, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619853

RESUMO

Importance: Factors associated with clinical heterogeneity in Alzheimer disease (AD) lay along a continuum hypothesized to associate with tangle distribution and are relevant for understanding glial activation considerations in therapeutic advancement. Objectives: To examine clinicopathologic and neuroimaging characteristics of disease heterogeneity in AD along a quantitative continuum using the corticolimbic index (CLix) to account for individuality of spatially distributed tangles found at autopsy. Design, Setting, and Participants: This cross-sectional study was a retrospective medical record review performed on the Florida Autopsied Multiethnic (FLAME) cohort accessioned from 1991 to 2020. Data were analyzed from December 2022 to December 2023. Structural magnetic resonance imaging (MRI) and tau positron emission tomography (PET) were evaluated in an independent neuroimaging group. The FLAME cohort includes 2809 autopsied individuals; included in this study were neuropathologically diagnosed AD cases (FLAME-AD). A digital pathology subgroup of FLAME-AD cases was derived for glial activation analyses. Main Outcomes and Measures: Clinicopathologic factors of heterogeneity that inform patient history and neuropathologic evaluation of AD; CLix score (lower, relative cortical predominance/hippocampal sparing vs higher, relative cortical sparing/limbic predominant cases); neuroimaging measures (ie, structural MRI and tau-PET). Results: Of the 2809 autopsied individuals in the FLAME cohort, 1361 neuropathologically diagnosed AD cases were evaluated. A digital pathology subgroup included 60 FLAME-AD cases. The independent neuroimaging group included 93 cases. Among the 1361 FLAME-AD cases, 633 were male (47%; median [range] age at death, 81 [54-96] years) and 728 were female (53%; median [range] age at death, 81 [53-102] years). A younger symptomatic onset (Spearman ρ = 0.39, P < .001) and faster decline on the Mini-Mental State Examination (Spearman ρ = 0.27; P < .001) correlated with a lower CLix score in FLAME-AD series. Cases with a nonamnestic syndrome had lower CLix scores (median [IQR], 13 [9-18]) vs not (median [IQR], 21 [15-27]; P < .001). Hippocampal MRI volume (Spearman ρ = -0.45; P < .001) and flortaucipir tau-PET uptake in posterior cingulate and precuneus cortex (Spearman ρ = -0.74; P < .001) inversely correlated with CLix score. Although AD cases with a CLix score less than 10 had higher cortical tangle count, we found lower percentage of CD68-activated microglia/macrophage burden (median [IQR], 0.46% [0.32%-0.75%]) compared with cases with a CLix score of 10 to 30 (median [IQR], 0.75% [0.51%-0.98%]) and on par with a CLix score of 30 or greater (median [IQR], 0.40% [0.32%-0.57%]; P = .02). Conclusions and Relevance: Findings show that AD heterogeneity exists along a continuum of corticolimbic tangle distribution. Reduced CD68 burden may signify an underappreciated association between tau accumulation and microglia/macrophages activation that should be considered in personalized therapy for immune dysregulation.


Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Neuroglia , Tomografia por Emissão de Pósitrons , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Masculino , Feminino , Idoso , Idoso de 80 Anos ou mais , Neuroglia/patologia , Neuroglia/metabolismo , Estudos Transversais , Estudos Retrospectivos , Emaranhados Neurofibrilares/patologia , Proteínas tau/metabolismo , Pessoa de Meia-Idade , Neuroimagem , Estudos de Coortes , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/metabolismo , Autopsia
11.
Medicine (Baltimore) ; 102(24): e34017, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327267

RESUMO

We previously demonstrated that increased expression of the SERPINA5 gene is associated with hippocampal vulnerability in Alzheimer's disease (AD) brains. SERPINA5 was further demonstrated to be a novel tau-binding partner that colocalizes within neurofibrillary tangles. Our goal was to determine whether genetic variants in the SERPINA5 gene contributed to clinicopathologic phenotypes in AD. To screen for SERPINA5 variants, we sequenced 103 autopsy-confirmed young-onset AD cases with a positive family history of cognitive decline. To further assess the frequency of a rare missense variant, SERPINA5 p.E228Q, we screened an additional 1114 neuropathologically diagnosed AD cases. To provide neuropathologic context in AD, we immunohistochemically evaluated SERPINA5 and tau in a SERPINA5 p.E228Q variant carrier and a matched noncarrier. In the initial SERPINA5 screen, we observed 1 individual with a rare missense variant (rs140138746) that resulted in an amino acid change (p.E228Q). In our AD validation cohort, we identified an additional 5 carriers of this variant, resulting in an allelic frequency of 0.0021. There was no significant difference between SERPINA5 p.E228Q carriers and noncarriers in terms of demographic or clinicopathologic characteristics. Although not significant, on average SERPINA5 p.E228Q carriers were 5 years younger at age of disease onset than noncarriers (median: 66 [60-73] vs 71 [63-77] years, P = .351). In addition, SERPINA5 p.E228Q carriers exhibited a longer disease duration than noncarriers that approached significance (median: 12 [10-15]) vs 9 [6-12] years, P = .079). More severe neuronal loss was observed in the locus coeruleus, hippocampus, and amygdala of the SERPINA5 p.E228Q carrier compared to noncarrier, although no significant difference in SERPINA5-immunopositive lesions was observed. Throughout the AD brain in either carrier or noncarrier, areas with early pretangle pathology or burnt-out ghost tangle accumulation did not reveal SERPINA5-immunopositive neurons. Mature tangles and newly formed ghost tangles appeared to correspond well with SERPINA5-immunopositive tangle-bearing neurons. SERPINA5 gene expression was previously associated with disease phenotype; however, our findings suggest that SERPINA5 genetic variants may not be a contributing factor to clinicopathologic differences in AD. SERPINA5-immunopositive neurons appear to undergo a pathologic process that corresponded with specific levels of tangle maturity.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Estudos Transversais , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Encéfalo/patologia , Hipocampo/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Inibidor da Proteína C/metabolismo
13.
Neurobiol Aging ; 97: 148.e9-148.e16, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32843152

RESUMO

Frontotemporal dementia (FTD) presents with a wide variability in clinical syndromes, genetic etiologies, and underlying pathologies. Despite the discovery of pathogenic variants in several genes, many familial cases remain unsolved. In a large FTD cohort of 198 familial patients, we aimed to determine the types and frequencies of variants in genes related to FTD. Pathogenic or likely pathogenic variants were revealed in 74 (37%) patients, including 4 novel variants. The repeat expansion in C9orf72 was most common (21%), followed by variants in MAPT (6%), GRN (4.5%), and TARDBP (3.5%). Other pathogenic variants were found in VCP, TBK1, PSEN1, and a novel homozygous variant in OPTN. Furthermore, we identified 15 variants of uncertain significance, including a promising variant in TUBA4A and a frameshift in VCP, for which additional research is needed to confirm pathogenicity. The patients without identified genetic cause demonstrated a wide clinical and pathological variety. Our study contributes to the clinical characterization of the genetic subtypes and confirms the value of whole-exome sequencing in identifying novel genetic variants.


Assuntos
Demência Frontotemporal/genética , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Presenilina-1/genética , Proteínas Serina-Treonina Quinases/genética , Proteína com Valosina/genética , Sequenciamento do Exoma , Proteínas tau/genética
14.
PLoS One ; 16(4): e0249305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33861770

RESUMO

Genetic studies have shifted to sequencing-based rare variants discovery after decades of success in identifying common disease variants by Genome-Wide Association Studies using Single Nucleotide Polymorphism chips. Sequencing-based studies require large sample sizes for statistical power and therefore often inadvertently introduce batch effects because samples are typically collected, processed, and sequenced at multiple centers. Conventionally, batch effects are first detected and visualized using Principal Components Analysis and then controlled by including batch covariates in the disease association models. For sequencing-based genetic studies, because all variants included in the association analyses have passed sequencing-related quality control measures, this conventional approach treats every variant as equal and ignores the substantial differences still remaining in variant qualities and characteristics such as genotype quality scores, alternative allele fractions (fraction of reads supporting alternative allele at a variant position) and sequencing depths. In the Alzheimer's Disease Sequencing Project (ADSP) exome dataset of 9,904 cases and controls, we discovered hidden variant-level differences between sample batches of three sequencing centers and two exome capture kits. Although sequencing centers were included as a covariate in our association models, we observed differences at the variant level in genotype quality and alternative allele fraction between samples processed by different exome capture kits that significantly impacted both the confidence of variant detection and the identification of disease-associated variants. Furthermore, we found that a subset of top disease-risk variants came exclusively from samples processed by one exome capture kit that was more effective at capturing the alternative alleles compared to the other kit. Our findings highlight the importance of additional variant-level quality control for large sequencing-based genetic studies. More importantly, we demonstrate that automatically filtering out variants with batch differences may lead to false negatives if the batch discordances come largely from quality differences and if the batch-specific variants have better quality.


Assuntos
Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alelos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteínas E/genética , Bases de Dados Genéticas , Exoma , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Análise de Sequência de DNA
16.
Artigo em Inglês | MEDLINE | ID: mdl-31244341

RESUMO

Mutations in the TANK binding kinase 1 gene (TBK1) are associated with amyotrophic lateral sclerosis and/or frontotemporal dementia; however, the range of clinical phenotypes and neuropathological changes associated with these mutations have not yet been completely elucidated. We present the detailed clinical, neuroimaging, and neuropathological features of two brothers carrying the TBK1 p.Gly272_Thr331del mutation. Both presented with very similar and unusual clinical features including primary progressive aphasia and asymmetric-onset primary lateral sclerosis (PLS). Repeated electrophysiological studies failed to reveal any lower motor neuron involvement. Neuropathological evaluation of both cases revealed frontotemporal lobar degeneration with TDP-43 proteinopathy type B and selective involvement of upper motor neurons with TDP-43 inclusions. The stereotypical clinical presentation and neuropathological findings in these cases widen the phenotypic spectrum of TBK1 mutations and provide insights into the pathogenesis of PLS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Doença dos Neurônios Motores/genética , Mutação/genética , Proteínas Serina-Treonina Quinases/genética , Idoso , Esclerose Lateral Amiotrófica/diagnóstico , Encéfalo/patologia , Humanos , Masculino , Doença dos Neurônios Motores/diagnóstico , Fenótipo
17.
Acta Neuropathol Commun ; 7(1): 150, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594549

RESUMO

The majority of the clinico-pathological variability observed in patients harboring a repeat expansion in the C9orf72-SMCR8 complex subunit (C9orf72) remains unexplained. This expansion, which represents the most common genetic cause of frontotemporal lobar degeneration (FTLD) and motor neuron disease (MND), results in a loss of C9orf72 expression and the generation of RNA foci and dipeptide repeat (DPR) proteins. The C9orf72 protein itself plays a role in vesicular transport, serving as a guanine nucleotide exchange factor that regulates GTPases. To further elucidate the mechanisms underlying C9orf72-related diseases and to identify potential disease modifiers, we performed an extensive RNA sequencing study. We included individuals for whom frontal cortex tissue was available: FTLD and FTLD/MND patients with (n = 34) or without (n = 44) an expanded C9orf72 repeat as well as control subjects (n = 24). In total, 6706 genes were differentially expressed between these groups (false discovery rate [FDR] < 0.05). The top gene was C9orf72 (FDR = 1.41E-14), which was roughly two-fold lower in C9orf72 expansion carriers than in (disease) controls. Co-expression analysis revealed groups of correlated genes (modules) that were enriched for processes such as protein folding, RNA splicing, synaptic signaling, metabolism, and Golgi vesicle transport. Within our cohort of C9orf72 expansion carriers, machine learning uncovered interesting candidates associated with clinico-pathological features, including age at onset (vascular endothelial growth factor A [VEGFA]), C9orf72 expansion size (cyclin dependent kinase like 1 [CDKL1]), DPR protein levels (eukaryotic elongation factor 2 kinase [EEF2K]), and survival after onset (small G protein signaling modulator 3 [SGSM3]). Given the fact that we detected a module involved in vesicular transport in addition to a GTPase activator (SGSM3) as a potential modifier, our findings seem to suggest that the presence of a C9orf72 repeat expansion might hamper vesicular transport and that genes affecting this process may modify the phenotype of C9orf72-linked diseases.


Assuntos
Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansão das Repetições de DNA/fisiologia , Redes Reguladoras de Genes/fisiologia , Heterozigoto , Transcriptoma/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Transporte Proteico/fisiologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-29558868

RESUMO

Homozygous loss-of-function mutations in optineurin (OPTN) are a rare cause of amyotrophic lateral sclerosis (ALS), whereas heterozygous loss-of-function mutations have been suggested to increase ALS disease risk. We report a patient with ALS and frontotemporal dementia (FTD) from the Clinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) Consortium carrying compound heterozygous loss-of-function variants in OPTN. Quantitative real-time mRNA expression analyses revealed a 75-80% reduction in OPTN expression in blood in the OPTN carrier as compared to controls, suggesting at least partial nonsense-mediated decay of the mutant transcripts. This case report illustrates the diverse inheritance patterns and variable clinical presentations associated with OPTN mutations, and underscores the importance of complete OPTN gene screening in patients with ALS and related disorders, especially in the context of clinical genetic testing.


Assuntos
Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/complicações , Demência Frontotemporal/genética , Mutação/genética , Fator de Transcrição TFIIIA/genética , Proteínas de Ciclo Celular , Análise Mutacional de DNA , Saúde da Família , Heterozigoto , Humanos , Lactente , Masculino , Proteínas de Membrana Transportadoras
19.
J Alzheimers Dis ; 65(4): 1139-1146, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30103325

RESUMO

Valosin-containing protein (VCP) is involved in multiple cellular activities. Mutations in VCP lead to heterogeneous clinical presentations including inclusion body myopathy with Paget's disease of the bone, frontotemporal dementia and amyotrophic lateral sclerosis, even in patients carrying the same mutation. We screened a cohort of 48 patients with familial frontotemporal dementia (FTD) negative for MAPT, GRN, and C9orf72 mutations for other known FTD genes by using whole exome sequencing. In addition, we carried out targeted sequencing of a cohort of 37 patients with frontotemporal lobar degeneration with Transactive response DNA-binding protein 43 (TDP-43) subtype from the Netherlands Brain bank. Two novel (p.Thr262Ser and p.Arg159Ser) and one reported (p.Met158Val) VCP mutations in three patients with a clinical diagnosis of FTD were identified, and were absence in population-match controls. All three patients presented with behavioral changes, with additional semantic deficits in one. No signs of Paget or muscle disease were observed. Pathological examination of the patient with VCP p.Arg159Ser mutation showed numerous TDP-43 immunoreactive (IR) neuronal intranuclear inclusions (NII) and dystrophic neurites (DN), while a lower number of NII and DN were observed in the patient with the VCP p.Thr262Ser mutation. Pathological findings of both patients were consistent with FTLD-TDP subtype D. Furthermore, only rare VCP-IR NII was observed in both cases. Our study expands the clinical heterogeneity of VCP mutations carriers, and indicates that other additional factors, such as genetic modifiers, may determine the clinical phenotype.


Assuntos
Demência Frontotemporal/genética , Mutação/genética , Proteína com Valosina/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Biologia Computacional , Proteínas de Ligação a DNA/genética , Saúde da Família , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Exame Neurológico
20.
Lancet Neurol ; 17(6): 548-558, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29724592

RESUMO

BACKGROUND: Loss-of-function mutations in GRN cause frontotemporal lobar degeneration (FTLD). Patients with GRN mutations present with a uniform subtype of TAR DNA-binding protein 43 (TDP-43) pathology at autopsy (FTLD-TDP type A); however, age at onset and clinical presentation are variable, even within families. We aimed to identify potential genetic modifiers of disease onset and disease risk in GRN mutation carriers. METHODS: The study was done in three stages: a discovery stage, a replication stage, and a meta-analysis of the discovery and replication data. In the discovery stage, genome-wide logistic and linear regression analyses were done to test the association of genetic variants with disease risk (case or control status) and age at onset in patients with a GRN mutation and controls free of neurodegenerative disorders. Suggestive loci (p<1 × 10-5) were genotyped in a replication cohort of patients and controls, followed by a meta-analysis. The effect of genome-wide significant variants at the GFRA2 locus on expression of GFRA2 was assessed using mRNA expression studies in cerebellar tissue samples from the Mayo Clinic brain bank. The effect of the GFRA2 locus on progranulin concentrations was studied using previously generated ELISA-based expression data. Co-immunoprecipitation experiments in HEK293T cells were done to test for a direct interaction between GFRA2 and progranulin. FINDINGS: Individuals were enrolled in the current study between Sept 16, 2014, and Oct 5, 2017. After quality control measures, statistical analyses in the discovery stage included 382 unrelated symptomatic GRN mutation carriers and 1146 controls free of neurodegenerative disorders collected from 34 research centres located in the USA, Canada, Australia, and Europe. In the replication stage, 210 patients (67 symptomatic GRN mutation carriers and 143 patients with FTLD without GRN mutations pathologically confirmed as FTLD-TDP type A) and 1798 controls free of neurodegenerative diseases were recruited from 26 sites, 20 of which overlapped with the discovery stage. No genome-wide significant association with age at onset was identified in the discovery or replication stages, or in the meta-analysis. However, in the case-control analysis, we replicated the previously reported TMEM106B association (rs1990622 meta-analysis odds ratio [OR] 0·54, 95% CI 0·46-0·63; p=3·54 × 10-16), and identified a novel genome-wide significant locus at GFRA2 on chromosome 8p21.3 associated with disease risk (rs36196656 meta-analysis OR 1·49, 95% CI 1·30-1·71; p=1·58 × 10-8). Expression analyses showed that the risk-associated allele at rs36196656 decreased GFRA2 mRNA concentrations in cerebellar tissue (p=0·04). No effect of rs36196656 on plasma and CSF progranulin concentrations was detected by ELISA; however, co-immunoprecipitation experiments in HEK293T cells did suggest a direct binding of progranulin and GFRA2. INTERPRETATION: TMEM106B-related and GFRA2-related pathways might be future targets for treatments for FTLD, but the biological interaction between progranulin and these potential disease modifiers requires further study. TMEM106B and GFRA2 might also provide opportunities to select and stratify patients for future clinical trials and, when more is known about their potential effects, to inform genetic counselling, especially for asymptomatic individuals. FUNDING: National Institute on Aging, National Institute of Neurological Disorders and Stroke, Canadian Institutes of Health Research, Italian Ministry of Health, UK National Institute for Health Research, National Health and Medical Research Council of Australia, and the French National Research Agency.


Assuntos
Degeneração Lobar Frontotemporal/genética , Predisposição Genética para Doença/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Mutação/genética , Progranulinas/genética , Idade de Início , Idoso , Estudos de Casos e Controles , Cerebelo/metabolismo , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Estudo de Associação Genômica Ampla , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Progranulinas/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA